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ENERETICS OF THI SOLAR SEMIDIURNAL TIDE

IN THE ATKMPHERE

by

Walter L. Jones

ABSTRACT

A study is made of the energy generation, transport, and dissipation

by the solar semidiurnal tide in the earth's atmosphere. Computations

based on recent observations at Terciera, Azores show a downward transport

of available potential energy in the troposphere, reaching a maximum of

-3
7 x 10 watts per square meter at or near the ground. Similar data for

Fort Worth, Texas, substantiates the assumptions used in this calculation.

This flux is generated primarily by water vapor insolational heating, though

horizontal convergence of tidal available potential energy may be significant.

Neither eddy viscosity nor an inverse correlation between convective

heating and tidal temperature fluctuation appear adequate as energy sinks

for this flux. Instead, it is proposed that the undulations of the earth's

surface interact with the main tidal motion to generate secondary internal

gravity waves; these propagate energy vertically to levels where they are

viscously damped, and thus represent a loss of energy to the tide.
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The complex form of the tidal-terrain interaction prohibits a

rigorous computation of its magnitude. Two very approximate approaches

yield energy fluxes of 0.5 x 107 3 and 30 x 10- 3 watts per square meter,,

respectively; both figures are of an order-of-magnitude nature. Thus no

definite conclusions can be reached about the importance of its effect.

If the effect is not the source of the downward energy flux, the effects

of eddy viscosity or convective heating must be greater than computed,

or some unknown energy sink must exist.

Computations are made of the extent to which eddy and molecular

viscosity damp the secondary internal gravity waves; waves longer than

3000 kilometers are damped in the thermosphere, by molecular viscosity

and possible by hydromagnetic damping. Waves from 1000-3000 kilometers

in length are damped in the mesosphere, and waves of length 200-1000

kilometers are damped in the troposphere. Still shorter waves must be

treated in a fully viscous theory.

The Terciera and Fort Worth data show a northward meridional

transport of tidal energy. Both stations also show meridional transports

of zonal momentum by the semidiurnal tide. A similar transport, with a

seasonal fluctuation, is found in meteor trail observations at 92 km.

Theoretical aspects of these transports and their relation to advection

of sensible heat and potential energy are discussed.

Finally, a simplified approach to non-linear tidal theory is taken

to show that interaction between tidal and Rossby waves cannot account for

the observed energy loss.

I
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CHAPTER I. INTRODUCTION

A. Observed Atmospheric Tides

Three excellent review articles are available to the serious student

of atmospheric tides. These are the chapter, Atmospheric Tides and Oscilla-

tions, by Chapman, (1950) in the Compendium of Meteorology; the book,

Oscillations of the Earth's Atmosphere, by Wilkes, (1949); and the Chapter,

Atmospheric Tides, in Advances in Geophysics, Vol. 7, by Siebert, (1961).

The last. is especially recommended as being most recent and most complete

in its theoreticql development. The first two offer more extensive accounts

of-dbservational data. As these references are generally available, only a

limited outline of the observed tides and the history of tidal theory will

be given here.

As early as 1727, Newton noted that universal gravitation implied an

atmospheric tide. He correctly surmised that it would be a very small

effect. By the latter part of the eighteenth century, the solar semi-

diurnal tide had been observed and was known to such mathematicians as

Bernoulli and D'Alembert, (Wilkes, 1949). The first complete dynamical

theory of tides was developed by Laplace, (1799, 1825).

Laplace also initiated the search for the lunar semidiurnal tide in

the atmosphere. The major incongruity of the atmospheric tides is that

the solar semidiurnal tide is thirty or forty times as large as its lunar

counterpart, while in the ocean, the lunar tide is dominant. In fact,

the lunar tide was too small for Laplace to recover from eight years of
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ground pressure data at Paris. Several others made unsuccessful attempts

in the next two decades to find the lunar tide.

The first reliable determination of the lunar tide was made by

le Froy at St. Helena, in 1842, (Sabine, 1847). It was relatively more

simple for him to obtain tidal data, both because of the increased magni-

tude of the lunar tide at low latitudes, and because of the relative

constancy of barometric readings in the tropics.

Other observations, especially of the solar tide, and by the end

of the nineteenth century, extensive compilations of the 24-, 12-, and 8-

hour tides were available, (Hann, 1889, 1889, 1918). Praninik, (1926)

computed similar data for the 6-hour tide. As early as 1890, Schmidt

noted that the distribution of the phase of the semidiurnal tide could be

explained by assuming two modes of oscillation, one progressing in a west-

ward direction, the other zonal and oscillating with Greenwich, rather

than local time.

Simpson, (1918), extended Schmidt's idea, applying it to the data

of 214 stations. He found two twelve-hour waves, given by the empirical

formulae:

+~a I VI

(1)

Here i is Greenwich time, V"U the tidal frequency, 0 the latitude,

and the longitude.
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Haurwitz, (1956) extended the analysis of the twelve-hour tide to

296 stations, and Kertz, (1959), analyzed Haurwitz data 1., terms of spher-

ical harmonic functions. The major components of the semi-diurnal tide

are:

X /0? IL( I") . (2)

1o70 P,'re) A. ( c0X ,30 7) /,0 a '"b.

The diurnal tide contrasts with the semidiurnal tide, inthat it is

quite variable, both in a random sense, and as a function of season. It

is also quite dependent on the height of the station above sea level. It

is generally of the same order as or smaller than the semidiurnal tide at

the surface of the earth.

The eight- and six-hour tidal components are a few tenths the size

of the semidiurnal tide, and are also quite irregular. It Is the predom-

inant semidiurnal tide which has attracted the most attention, and which

will be the principal topic of this dissertation.

B. History of the Resonance Theory of Tides

As was noted, the first dynamic theory of the tides was developed

by Laplace, (1799, 1825). Although most of his studies dealt with incom-

pressible oceans of uniform depth, he showed the theory could be applied

to a compressible atmosphere, providing three assumptions are made:
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1. Vertical accelerations are negligible.

2. The atmosphere is isothermal.

3. Oscillations occur under isothermal conditions.

The first assumption continues to be used widely in tidal theory,

as well as in many other atmospheric problems. The second is an oversim-

plification that obscures effects which later researchers considered vital.

Nevertheless, it is a great convenience, when used judiciously, and can be

used to illustrate important points at least qualitatively. The third

assumption does not appear valid at all. First, external heating may be

important, and second, even in the absence of heating, tidal motions would

be more nearly adiabatic than isothermal. Chapman, (1932) has shown this

to be true for the lunar semidiurnal tide, for example.

Laplace also noted the disparity in magnitude between solar and

lunar tides. He attributed this to a heating source for the solar tide,

of much greater magnitude than the gravitational source of the lunar tide.

Kelvin, (1882), pointed out that if this were the case, one would

expect the solar diurnal tide to be substantially larger than the semi-

diurnal tide, since the diurnal heating is larger than the &emidiurnal.

As a solution to this dilemma, he suggested that the atmosphere has a

natural resonance near twelve hours. The isothermal atmosphere of Laplace

possessed such a resonance, whose frequency was determined by the atmos-

pheric temperature. Kelvin's suggestion led to a half-century and more

of work on the so-called "resonance theory" of tidal motions by many

authors.



Rayleigh, (1890), and Nargules, (1892), were the first to investi-

gate the periods of free oscillations in search for the resonance. Rayleigh

made several simplifications, among them the critical neglect of the earth's

rotation. Nargules included the rotation, but based his work on Laplace's

-.theory,'and so suffered from the same assumptions and their limitations.

Nargules, (1890), also considered the oscillations of an atmosphere subject

to periodic heating.

Lamb, (1910, 1916), extended Laplace's theory to an atmosphere in

convective equilibrium, with an adiabatic lapse rate and adiabatic changes

of state. This model gave results very similar to that~of Laplace. Both

behaved like an incompressible fluid with a depth equal to the scale height

at the base of the atmosphere, and so possessed a natural resonant frequency.

Lamb also showed that an atmosphere with a uniform but non-adiabatic lapse

rate has an infinite number of resonances of different frequencies. Taylor,

(1936), extended Lambs model to a rotating sphere. The possibility of

multiple resonances was later to be vital to the resonance theory.

In 1924 Chapman considered eddy conduction of heat from the surface

of the earth as a tidal driving force. The phase for such a thermally

driven tide was nearly in quadrature with that of a gravitationally induced

tide; the observed phase of the semi-diurnal progressive tide lay about

*midway between the two. From this observation, as well as from computed

values of eddy heat transport, Chapman concluded that the thermal and

gravitational driving forces were nearly equal in their effectiveness.

For some time,.'it was thought that the phase of the semldiurnal tide had

been explained in this manner. It was still necessary to invoke a strong
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resonance to explain the magnitude of the tide.

Bartels, (1927), then developed a two-layer model, with a tropos-

phere of constant lapse rate, and an isothermal stratosphere. This model

had a single free wave eigensolution, with a period of about 10.5 hours.

This was not close enough to the twelve hour tide to produce a large

amplification, however. Taylor, (1929) showed that this resonance did

agree well with the velocity of the Krakatoa pressure wave of 1883. For

a short while, this model posed a serious problem to adherents of the

resonance theory. However, Taylor himself, (1936), eliminated the diffi-

culty by pointing out the possibility of multiple resonances.

In 1937 Pekaris developed a five-layer model, having a 220 K.

isothermal stratosphere, a 190 K. isothermal top, and a region of temper-

ature maximum, around 350 K., just below 60 km. This temperature profile

was in good accord with what was then known of the upper atmosphere: The

temperature maximum had been inferred from anomalous sound propagation,

(Whipple, 1918), and the low temperature above 80 ka. from the presence

of noctilucent clouds.

The Pekaris model had two resonant frequencies, one at 10.5 hours

and a second at 12.0 hours. This theory thus appeared to explain both

the Krakatoa wave speed and the resonance of the semidiurnal tide. When

combined with the explanation by Chapman of the phase, the semidiurnal

tide seemed well explained.

In the last decade, however, several criticisms of the resonance

theory have been raised. Siebert, (1957), and Kertz, (1959), have observed
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other wave types of 6- and 8- hour frequencies. While interpretation of

their analyses is difficult, it appears that these waves would need

resonances amplification comparable to that of the semidiurnal wave; no

such resonances have been proposed theoretically.

More damaging are the recently obtained temperature data for the

temperature maximum. These data, mostly from rocket soundings, show a

much lower temperatuere, less than 300 K. The ARDC 1959 model atmosphere,

for example, shows a maximum of 283 K., (Minzner, Champion, and Pond, 1959).

Jacchia and Kopal, (1952), investigated the sensitivity of the Pekaris model

to changes in the temperature profile. It is quite sensitive to changes in

the temperature maximum; a change of ten or fifteen degrees alters the semi-

diurnal resonance amplification very markedly, and a reduction to 300 K.

causes it to disappear entirely, leaving only the tropospheric mode corres-

ponding to the Bartels model.

Finally, the Pekaris model predicts a mode in the pressure wave near

30 km. Recent data by Harris, Finger, and Teweles, (1962), for the semi-

diurnal tide shows no such node up to a height of 10 mb., or 31 km. It is

possible such a node exists at a greater height, but if so, there is no

trace of it at this level.

C. Recent Contributions to Tidal Theory

Without the aid of a strong resonance amplification, gravitational

and eddy-heating generating forces are inadequate to explain the observed

tidal amplitudes. Recently, attention has been turned to insolational
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heating bTwater vapor, carbon dioxide, and ozone absorption.

Sen and White, (1955), and White, (1956) developed an improved tidal

theory, taking into account heating of any form and at any height. Inde-

pendently, Siebert, (1955), derived a similar theory; as it is somewhat

simpler and follows more directly along the main line of development of

tidal theory, Siebert's theory will be taken as the basis for the following

work.

Siebert (1961) made use of his theory to analyze insolational heating

by water vapor. He used a rather artificial atmospheric model, neither

isothermal, nor adiabatic, but representative of a troposphere with a gradual

,transition into a stratosphere. This model has one mode of oscillation

close to that of Bartels. Siebert made use of the empirical Mugge - iller,

(1932) equation for water vapor absorption. The model showed a resonance

amplification of 3.7, and developed a tide one-third the magnitude of the

observed tide.

Thus, insolational heating by water vapor appears considerably more

important than either eddy conductivity or gravitational potential as a

source of the semidiurnal tide. It is, at least according to Siebert, not

adequate to explain the observed tide. He proposes three possibilities:

1. There is a resonance of a form that has been overlooked.

2. The insolational heating coefficients are too small.

3. There are sources that have not been discovered.

As one'additional source, Siebert considered ozone absorption,

concluding that it is perhaps a third as effective as water vapor, but
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recognizing the approximate nature of both the model and the absorption

data. Small and Butler, (1961), also considered ozone heating, using a

more appropriate temperature profile, (Murgatroyd, 1957). They concluded

that ozone heating is capable of producing both the observed amplitude and

phase of the semidiurnal tide, and felt the unrealistic form of Siebert's

temperature profile led to his smaller amplitudes for ozone heating.

In recent years, some knowledge of tidal oscillations as a function

of height has been obtained. Meteor trails have been observed by radar,

and the tidal winds deduced at 80 to 100 km., (Greenhow and Neufeld, 1955,

1956, Ilford, 1953). One series of 23 hourly rocket soundings has been

analyzed for tidal winds in the height range of 35 to 65 kilometers,

(Lenhard, 1963). At lower levels, Wagner, (1932), and Stapf, (1934),

observed the tides at several Alpine stations, and found a phase lag with

height. This has been confirmed by radiosonde observations reduced by

Harris, Finger, and Teweles, (1962). J. Bjerknes (1949) has qualitatively

interpreted this phase lag as the result of ground friction. Since

Chapman's explanation of the tidal phase was based on mechanisms requiring

resonance, it no longer is valid, and some such explanation of phase shift

is a necessity.

D. Scope of the Present Study

This study is primarily concerned with the generation of secondary

internal gravity waves with tidal frequency, but shorter wavelength. The

primary source of these waves is a tidal-terrain interaction, though non-

linear intt.action with the large scale atmospheric eddies is also considered.

A __
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The secondary waves propagate energy vertically to levels where they are

damped, by eddy viscosity, molecular viscosity, or possibly magnetic

damping. As these waves extract energy from the primary tide, they

represent a loss mechanism for the latter, exerting a substantial influ-

ence on its character. In particular, the mechanism offers an explanation

of the pressure phase at the ground.

Chapter II discusses the traditional linearized and inviscid tidal

equations, essentially as developed by Pekaris, (1936), Weekes and Wilkes,

(1947), Wilkes, (1949), and Siebert, (1955, 1961). Non-adiabatic heating

is included, and rotating planar and spherical geometries are treated.

Chapter III discusses the boundary conditions that must be imposed

on the vertical wave equation. In particular, it is shown that the normal

assumption of no vertical velocity of the primary wave at the ground may

not be valid. If the surface is undulatory, the horizontal motions would

transfer mass through the terrain slope unless there are additional waves

to counteract this transfer. These waves are related in scale to the

terrain disturbances, and have tidal period. A Fourier analysis of the

earth's surface around a latitude circle is used with a planar model to

obtain an estimate of the vertical energy transport by the secondary waves,

and hence of the downward energy transport required in the primary tidal

wave. A very approximate analysis, in all probability an underestimate,

-3

gives a vertical energy flux - 0.5 x 10 watts per square meter.

In Chapter IV, observational data for the semidiurnal tide above

the Azores, (Harris, Finger, and Teweles, 1962), are considered. Under

t
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the logical and self-consistent, though yet unproven assumption that one

known mode of oscillation prevails throughout the troposphere and lower

stratosphere at that location, it is found that there is a downward flux

of tidal energy. This flux is at a maximum at the surface, where secondary

-3
waves are generated; it requires the generation of 7 x 10 watts per

square meter of tidal energy, by a source located in the troposphere.

Insolational heating by water vapor seems to satisfy this requirement.

This flux is an order of magnitude greater than the lower limit predicted

for the tidal-terrain effect; unfortunately, an upper limit has not been

established.

As the theory of secondary waves developed in Chapter III depends

on the assumption that they are dissipated at some level in the atmosphere,

the effects of eddy and molecular viscosity are taken up in Chapter V.

Data on these viscosities are meager and subject to problems of interpre-

tation, but it appears that the bulk of the secondary waves are dissipated

in the troposphere. The longest waves transport 10 or 20% of the energy

to the mesosphere or even the lower ionosphere, where molecular viscosity

becomes important. Iddy viscosity does not appear to play an important

role in the primary semidiurnal tide, as it is observed in the troposphere.

It is concluded from theory and observation that viscous losses do not

( account for the downward flux of tidal energy.

Another possible source of dissipation, hydromagnetic damping in

the ionosphere, is considered in Chapter VI. The assumptions are crude,

but provide an upper limit to damping, which is comparable to molecular
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viscosity for waves of interest in the E-layer.

A third possible sink for the downward flux of tidal energy can be

found in convection of heat from the ground. Just as a positive correla-

tion between temperature and insolational heating brings about a generation

of tidal energy, so a negative correlation between convective heating and

density might provide for its dissipation. This possibility is examined

in Chapter VII. From the limited knowledge of convective heating, it

appears too small, by less than an order of magnitude. It is also argued

that such an effect should produce abrupt changes in tidal pressure between

the ground and 900 mb levels that are not observed.

Chapter VIII considers other aspects of the observed tide, including

meridional transport of angular momentum and tidal energy, and the genera-

tion of tidal kinetic energy. The equations of motion are used to show how

these quantities, all zero for a single linear mode, may be non-zero in

the presence of a mixture of modes of oscillation.

Non-linear interaction between tidal and Rossby waves are treated

in Chapter IX. A wave equation analogous to the linear case is derived

for the case where the mean magnitude of all waves is constant. This equa-

tion is applied to an elementary model in order to obtain an order of

magnitude estimate of the energy transport by secondary waves so generated.

Little energy is lost in long wavelengths; it is possible, but not likely

that short waves provide a considerable loss, but most of their energy is

derived from the Rossby waves.
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CHAPTER II. THE LINEAR TIDAL EQUATIONS

A. Major Assumptions

The following linearized tidal theory is, in large part, that

presented by Siebert, (1961). His work in turn follows directly from

those of Pekaris, (1937), and Wilkes, (1949). Siebert's nomenclature

will be retained, except as noted. In subsequent chapters, both rotating

planar and rotating spherical geometries will be used, and the tidal

equations will be derived for both cases.

Three major assumptions, all traditional to tidal theory, will be

made at the outset. The first is the assumption of negligible vertical

accelerations, the hydrostatic approximation used in much of meteorology.

Eckart, (1960), has developed atmospheric wave equations along somewhat

different lines without this assumption. The effect of the approximation

is to change terms of the form N O  to the form /V*. is

the Viisali-Brunt frequency, and Ur the tidal frequency. As the former

corresponds to periods of a few minutes, while the latter corresponds to

periods of several hours, the error introduced by the hydrostatic approx-

imation is quite small.

The second assumption is that all terms involving the horizontal

component of the earth's angular velocity are negligible. These terms

appear as vertical accelerating forces or in conjunction with small vertical

velocities, and are also normally neglected in meteorological work. Again,

Eckart has considered this approximation in some detail. In the case of
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the rotating plane, the equations may be solved, albeit with more diffi-

culty. The error introduced by the assumption is small unless the tidal

angular frequency is nearly twice the vertical angular velocity of the

plane, crudely corresponding to the poles for the semidiurnal tide, and

a latitude of thirty degrees for the diurnal tide.

In the case of a rotating sphere, the separation of horizontal and

vertical variation of parameters is no longer possible unless this approx-

imation is made, and no solution to the tidal equations is known for this

case. Eckart accepts this approximation with reservations, therefore.

Finally, it will be assumed that the undisturbed atmosphere has only

vertical variation of such parameters as pressure or temperature, or at

least that horizontal variations contribute only terms small enough to be

dropped in the linearization of equations.

B. The Rotating Plane

In this model, the earth is assumed to be planar and smooth, with a
0

vertically directed angular velocity, W . The gravitational acceleration,

is assumed to be constant and everywhere uniform. The atmosphere is

taken to be inviscid and of uniform composition. Atmospheric parameters

such as temperature, T , pressure, P , and density, P , are assumed

to consist of an undisturbed, time-invariant component and a tidal component.

The former will be denoted by the subscript 0 , and the latter by the

subscript , or f if they belong to a specific mode of oscillation.

____
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Thus:

T+T +X T(1)

for example. The zero-order hydrostatic equation is:

- -P (2)

and the equation for an ideal gas is:

p,. ,T= .H0 (3)

where K is the universal gas constant, A the mean molecular weight of

the air, the vertical coordinate, and i, the atmospheric scale height.

The equation of motion is:

-4 
--P

+. a 73 V#- (4)

As the tidal potential is assumed to have negligible importance for the solar

tides, it is omitted from equation (4). (It is included in Siebert's work).

If (4) is linearized on the assumptions that perturbations are small compared

to undisturbed quantities and that velocities are small compared to AC.,

where 6t is a tidal scale distance:

-4
-%. -- P

+ Ve-(5)

The horizontal coordinates of the plane are taken to be and

, and the corresponding velocities as 1A and V . The vertical
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velocity is W If vertical accelerations are ignored, (5) may be

written as:

_ _aco, = -2 .
a, Vv P,-- .P*-- -j (6)

(7)

dtt
= AD ~ (8)

The equation of continuity is:

S "=0 (9)

where the velocity divergence is written as:

I J j (10)

The first law of thermodynamics may be written as:

&c~ ~T (11

SQ is an infinitesimal amount of heat added per unit mass, and and

Cp are the specific heats of air at constant volume and pressure, respect-

ively. Both specific heats are assumed to be constant and spacially uniform.

If there is a periodic addition of heat from external sources, which may be
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described by a heating rate Y--. units of heat per unit time per unit

mass, then:

(12)

If (12) is substituted into (11), and use is made of the relations:

R = A (C, --C ) (13)

Y CE (14)

where j" is the mean molecular weight of the air.

Then equation (11) becomes:

R_ -_ D-P--"- (15)

If equation (3) is differentiated, it becomes:

v d 0p=d7
- - (16)

This equation may be used to eliminate T" from (15), with the result that:

9.-& = Y o . (_)J, 1... (17)

Dt D

In its linearized form:

D P,- O,(18)W . + W, C4 PeDt
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Similar results are obtained for the substantial derivatives of T and P.

These basic equations may now be used to develop a set of tidal

equations. It is assumed that all tidal variables have time dependence

of the form , so that:

~ (19)

Equations (6) and (7) may be solved for U4. and V. with the aid

of (19):

I . '~(20)

P41 2~ CA>Sv.- 0 ._ .) .. ' * (21)

If a differential operator F is defined by:

where O is a characteristic distance, then (20), (21), and (22) may be

substituted into (10), obtaining:

= + _we--+ (23)

The objective will be to obtain from (23) an equation in . which

may be solved by the method of separation of variables. If equations (9),

(17), and (18) are combined, and use is made of (19):

_ _ _ _ _ _
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(24)

or on application of (2):

Aep d H
(25)

If this is in turn differentiated with respect to

dCO-&! - -. p( + H _

He. (26)

Here use has been made of the fact that:

. .0+- (27)

The equation of continuity and the hydrostatic equation may be combined to

obtain:

n (6 ad ( e (28)

Equations (26) and (28) may be combined to obtain:

v,* ro (29)
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If this equation and (23) are differentiated with respect to

and ± 2 eliminated between them, the resulting equation is:

a XH (e. X,)(

where A = - But from (25) and (29):

(A+

(31)

On substitution of (31) in (30) and further simplification:

', A'-*) - -,

7. .~. A , Al VF(32)f:.. +,,,., xv.- + r-.

=0

Equation (32) may be solved by the method of separation of variables.

Let and U. be represented by expansions in the eigenfunctions

of the operator FXe- Jx( ' , it (33)
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When these coefficients are substituted into (32), with taken as the

separation coefficient:

q a . a~
!F F+ - " = 0

- (34)

+i Xf. 0( +f 0(-, 09" (35)
and:

The value of the separation coefficient is determined by the eigen-

solutions to equation (34). If 3, and H& are known functions of ; ,

then equation (35) can in principal be solved for X . It is possible to

express all other tidal parameters in terms of X

It is conventional to transform equation (35) into the form of a

one-dimensional wave equation by two further changes of variable. Let:

(36)

and:

eH (37)



-22-

When (36) and (37) are substituted into (35), the resulting equation is:

a

TM (38)

~- -"

Eigensolutions for the pressure and velocities can also be expressed in

terms of the wave function , (Siebert, 1961):

(40)

,,-- ( 0 ..- "Ga4)) (41)

V, -YL I (42)

C. The Spherical Model

In the case of this model, the earth will be taken to be a smooth

sphere, with radius 4. Latitude will be denoted by 0 , and longitude

by * The northward and eastward winds will correspondingly be denoted

by V and I (Note that Siebert uses e as co-latitude, ( as the

I 
S
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southward wind, and V as the eastward wind.) The radial distance P to

a point at a height ) , (rJ4 A ) will be replaced by CL if it

appears as a factor of another variable. All other quantities will remain

as they were defined in the previous section.

In spherical coordinates, the divergence equation becomes:

and the horizontal motion equations become:

I

- --e - (44)

and

These two equations may be solved for 'r and VS. I yielding:

and:

=-.' ,J (47)VO-,L4
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It is also feasible to redefine the differential operator F

I f . ,then:

F= -F O' )
.. 'ot L ~ 'I (48)',; tip

When (46), (47), and (48) are substituted into (43), the resulting

equation:

is identical to equation (23). The same procedure may now be followed,

arriving at equations (34) and (38). However, the eigensolutions to (34)

are now considerably more complex.

D. Eigensolutions for the Separation Coefficient ha

In the first case, that of the planar model, the solutions to equa-

tion (34) may take on a very straightforward form. If the tidal variables

have the periodic form:

the n ; b-oe, + ,,4s,,,:,),to(50

then (34) becomes:
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(51)

or:

= ( h...f 4a (52)

In the broadest sense of the planar model, that is in the case of a

plane that is simply infinite, the wave numbers It and At , and hence

h ,can take on all real values. ( h will be confined to positive

or negative values, depending on whether W)J ). If the model is

made more earthlike by assuming the geometry to be periodic in j and 1

then the wave numbers and the eigenvalues of hn must take on discrete

values.

In the case of a rotating sphere, is no longer a simple

function. It may be described by:

P, (6,0 (53)

The solutions for obtained from (34) and (53) were first

obtained by Hough, (1897); accordingly they are known as Hough's functions.

The subscript V" denotes the oscillational frequency, S the number of

wavelengths around a latitude circle, and M-S the number of nodes in the

Hough's function, (and the pressure) between but not including the poles.

i __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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For each eigensolution of (34) there is a specific and a

corresponding value of Ila Some typical values taken from Siebert,

(1961), and Eckart, (1960) for the semidiurnal tide are given in Table I.

U. is expressed as a multiple of W)..

Table I. Semidiurnal Hough's Functions.

15.6

, a 5.70

931. 1 2.94

03L 3.77

IRI 4.85

2.11

0.96

For O'C) and S)O , that is, for slowly westward moving waves,

a second class of Hough's functions exist. This second class has much larger

values of h, than its counterparts in the first class. Only one mode of

the second class, e may be excited by the diurnal tide, and that only

because the solar day is slightly shorter than the sidereal day. No oscil-

lation of the second class may be excited at the semidiurnal frequency.

In both geometries, he. decreases rapidly as the wavelength decreases

in either zonal or meridional direction. A more complete discussion of Hough's

functions and their application to the tides will be found in Kertz, (1957).
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E. The Vertical Wave Equation

While equation (34) determines the horizontal character of the tides,

equation (38) specifies its vertical character: whether it more nearly

resembles internal or surface gravity waves, and whether there are resonances

or vertical energy propagation. As it is a second order differential equa-

tion, two boundary conditions for I must be specified. As H0 may

vary in a complicated manner with height, the solution of (38) may be possible

only by the use of simplified vertical temperature profiles, or by numerical

methods.

The most drastic simplification is to assume an isothermal atmosphere,

with constant H. , and to assume the heating function, J,. , is every-

where zero. Two types of waves then exist, (c.f. Queney, 1947, Eckart, 1960,

Hines, 1961). Let two new variables be defined as:

a ,, @,,

L I - - !L (.* e.-4
and:

( (5)

In an isothermal atmosphere, /. and A are constant. If /U_ 0

there will be solutions of the form:

~ (56)
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While if > 0 , the solutions take the form:

OY fe (57)

Solutions of form (56) are surface gravity waves, and do not propa-

gate energy vertically. Solutions of form (57) are internal gravity waves

and transmit energy vertically as well as horizontally.

Now consider a two-layer atmosphere consisting of a warm isothermal

lower layer and a cold isothermal upper layer. For a range of 1% , waves

will be internal waves in the lower layer and surface waves in the upper

layer. Energy propagated vertically in the lower region will be reflected,

both at the earth's surface and at the interface. If the period needed for

a wave to propagate from the ground to the interface and back is an integral

harmonic of the period of a tidal driving force, strong resonance amplifica-

tion can result. This, in considerable oversimplification, is the modern

tidal resonance theory.

There is an approximation associated with Wentzel, (1926), Erasmers,

(1926), and Brilouin, (1926), which has been of considerable use to modern

physics. This is commonly known as the WKB approximation. Ickart, (1960),

has shown how this approximation can be applied to gravity waves under the

appropriate circumstances. His development, applied to the problem at hand,

is outlined below.

Without loss of generality, one may write:

(it)e;4 r)()

where Y and j are real, non-linear functions of '
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Then:

2r (59)

The WEB approximation is made by assuming the second term on the

right-hand side of (59) is negligible compared to the first, and that

therefore:

(60)

If this is so, equation (38) reduces to:

Iff=0.

(==

(62)

The phase of is determined to an arbitrary constant specified by

or 1 For convenience X'fv or )" may be taken to be zero, with the

phase incorporated into a complex

In the atmosphere, this approximation becomes Increasingly valid as

wavelengths become shorter and changes in > become small over a wave-

length in the vertical; that is, the approximation is valid when:
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A , < I
(63)

It is not applicable to the surface gravity waves, nor in general to the

primary tidal wave. The approximation has the effect of transforming the

vertical coordinate into a new coordinate system in which the vertical wave-

length is constant. In this new coordinate system, waves are propagated

as they are in an isothermal atmosphere.

If there are abrupt changes in \p. , a second approximation may

also be used; this is to assume > uniform except at a discontinuity

surface at soe height. This case has been treated by Queney, (1947) it

is quite analogous to the reflection of electromagnetic waves at the inter-

face between media of different index of refraction.

An internal gravity wave of the form:

y A: (64)

has a downward phase propagation, but an upward energy propagation and

group velocity. Let such a wave propagate energy up to the interface from

below. Assume also a reflected wave:

,, 8 ( (65)

in the lower region, and a transmitted wave:

(66)
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in the upper region. Without loss in generality, the interface may be

taken to be at Xm O . If discontinuities in pressure and vertical

velocity are to be avoided, both and W must be continuous

across the interface. Therefcre:

A -C I (67)

1.4-

OA -

12

it0 a 4 6 a 10 12 1.4

RM I I I I I I I I I I
0 10 20 30 40 50 0 70 so 90

HEIGHT

Figure 1. xs As a function of height, for h = 1 km., based on

ARDC 1959 model atmosphere.
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If -. - , then C A 3 . As the energy flux is proportional

to the square of the wave magnitude, only 11% of the energy is reflected.

Figure 1 shows A as a function of W for 1 km.,

based on the ARDC 1959 model atmosphere, (Minzner, Champion, and Pond, 1959).

As this model has discrete jumps in the temperature gradient, and thus in

the scale height gradient, it has discontinuities in . The largest

of these appears at the tropopause, where A.I3, _ 1 , and only 11% of

the energy will be reflected in an upward propagating wave. (The ratio

bef is approximately constant for waves with length less than five

or six thousand kilometers.) As the atmospheric changes are not discontin-

uous, this is a pessimistic estimate. Therefore, it seems internal gravity

waves will be transmitted with little reflection. This conclusion does not

take into account the effects of winds and wind shears, which Charney and

Drazin, (1961) showed reflect Rossby waves quite strongly. This is an

important possibility, which should be investigated in the future.
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F. Transport of Tidal Energy

As the tidal motions are wave notions, they can transport energy

from one part of the atmosphere to another. Consider a specific mass of

air, in which the kinetic energy, potential energy, and internal energy

per unit volume are given byjI l d ip and E , respect-

ively. It can be shown that the rate of change of the total energy of

this mass is, (c.f. Milne-Thomson, 1959):

DJat P~ 1  'Ml.F .4s (69)

where is a differential volume, dl a differential surface

element, and fl a unit vector directed normally inward. Equation (69)

states that the rate of change of the total energy of the mass is equal

to the rate at which work is done on its boundry.

This equation may be integrated over a tidal period, to obtain the

mean rate of change of energy, but it is nqcessary to use Lagrangian,

rather than Eulerian parameters in evaluating the work done on the boundary.

The excursions of the surface are quite small compared to the distances

over which tidal velocities change, and the substitution of velocities

observed at a point in space involves no significant error. The substi-

tution of Eulerian for Lagrangian pressures needs further justification,

however. Let P be the pressure measured at a given particle. Then

from equation (18),
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J;OV (70)

or:

PO- (71)

First consider the mass of air which, at rest, would lie above a

horizontal surface at some specified height. Under the influence of tides,

the surface will oscillate about this position. The time average of the

work done per unit area at any point on the surface is:

(72)

But since:

While the vertical velocity causes a difference between . and

it is a difference whose effect is cancelled in averaging over a period.

Next consider the mass which, at rest, would lie to the north of

a given latitude. With a tide, this surface will be displaced; however,

an area on this surface will be practically equal to its meridional
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projection. Since the displacement of the mass surface in the horizontal

is small compared with the scale of horizontal tidal variations, the

pressure and meridional velocity at a point on the mass surface will also

be very nearly the same as at its horizontal projection on the latitude

surface. Thus:

-7 v~pL V; (75)

a similar argument can be made for zonal transport of energy across a

meridional circle.

Lorenz, (1955), defines available potential energy as the potential

and internal energy that is available for conversion to kinetic energy

under any adiabatic redistribution of mass. Consider a given mass of fluid,

constrained by pressure forces on its surface and by potential forces such

as gravity. If the shape of the mass remains unchanged, and its center of

gravity remains at the same potential. Then the resultant of the pressure

forces acts to change the total momentum of the mass, and the integral of

P V over the surface equals the rate of change of kinetic energy of

the mass. Since the process is adiabatic, it is also the negative rate of

change of available potential energy plus kinetic energy of the rest of the

universe. As kinetic energy is not advected over the surface of the mass,

may be taken to be a flux of available potential energy.

If the rigid mass moves to a different potential, not all of the

pressure work will be converted to kinetic energy. However, the changes

of potential energy may be recovered as kinetic energy at a later data,



-36-

and thus represents an increase in available potential energy. Similarly,

if the body changes shape, there will be a change in internal energy. One

may think oL the pressure forces imparting kinetic energy to the surface

layer of molecules, which in turn transfer the energy to the interior

adiabatically, in part as internal and potential energy. Since the process

is adiabatic and hence reversible, kinetic energy may be recovered. The

stored energy is thus available potential energy, and P may still be

treated a a flux of available potential energy.

It has been assumed for this chapter that the only variations of

atmospheric parameters in a horizontal plane are those of the tidal pertur-

bations, therefore, the only available potential energy is that which may

be associated with these perturbations. If one views tidal transports from

an Eulerian point of view, advection of sensible heat and potential energy

may occur. Such advections, as they may be related to the mean flux of

tidal available potential energy, are discussed in Chapter VII.
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CHAPTER III. BOUNDAY CONDITIONS FOR THR LINEAR TIDAL EQU.TIONS

A. The Upper Boundary Condition

Equation (11-38) Is a second order differential equation for

( ( ) ; It requires two boundary conditions on WVI In order

to obtain a complete solution. There has not been complete unanimity on

the proper choice of these conditions. The lower boundary condition has

normally been taken to be that WVt v 0 at the surface of the earth.

This will be discussed in the second section of this chapter.

A very natural second choice is to require the total kinetic energy

in a unit column of the atmosphere to be finite. That is:

It may be shown, (Siebert, 1951), that this is equivalent to requiring

that:

(2)

This boundary condition Is adequate if waves behave like surface gravity

waves, in which case it specifies the solution that attenuates with height.

It is not applicable to isothermal atmospheres, or to atmospheres in which

the upper regions are isothermal or allow the WKS approximation, when wave-

lengths are short enough for the waves to behave as internal gravity waves.

Such waves do not attenuate with height. The fact that no such solutions
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ground the sum of such transports must by matched by a downward flux in

the primary tidal wave.

If it is assumed that the internal gravity waves generated by the

tidal-terrain interaction have short wavelengths, and additional approx-

imate relationship may be derived for isothermal atmospheres, or atmos-

pheres where the WK approximation is valid. Since these waves propagate

energy upward:

-101 =- i (35)

For short waves, sL u. A , and ht , V Therefore for

large qA :

pr, 
(37)

Thus P and Wjy are approximately in phase for each of the internal

gravity waves.

At any point on flat, oceanic portions of the surface of the earth,

the sum of the vertical velocities of the tidal and secondary waves must

be zero, and so must the total vertical energy flux. Since the pressures

and vertical velocities of the secondary waves are in phase, the time of

maximum vertical flux of these waves is in phase with their maximum vertical
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velocity, and thus in phase with both the maximum downward flux and down-

ward velocity of the tide. This requires that the tidal vertical velocity

be 180 degrees out of phase with the tidal pressure.

With this relationship established, it is possible to examine

qualitatively the effect of introducing terrain in tidal models. The

basic tidal equation is:

:h h. (38)

The complete solution consists of a particular solution to (38), plus

general solutions to the corresponding homogeneous equation, of proper

magnitude and phase to match the boundary conditions. One may divide the

latter into a component that would be required to satisfy a flat lower

boundry, and a remainder associated with the influence of terrain.

For waves such as the @ mode, W lags P by 90 degrees

in the homogeneous solutions at ground level. Let t be the complete

solution for the pressure at the ground with a flat surface, and let V-

and P6 be the vertical velocity and pressure of the additional

homogeneous solution required to match an undulation surface. If V/6

lags Pb by 90 degrees and .+ 2b by 180 degrees the phase

relationship must be as shown in Figure 3.

The final ground pressure, IRm. jg , must lag the pressure

derived on the basis of flat ground. The actual atmosphere shows such a

lag, of about 25 degrees, (Siebert, 1961).
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II
Wb

PO

Figure 3. Phase relationships between pressure and vertical velocity at

the ground.

C. Evaluation of the Vertical Velocities and the Total Energy Flux

Under certain circumstances, evaluation of the vertical velocities

from equation (19) could be considerably simplified. All but the very

largest secondary waves are internal gravity waves; if the ARDC 1959 Model

Atmosphere temperature profile, (Minzner, Champion, and Pond, 1959) is used,

then near the ground the ratio 1"j : w is about 100:1. It will

be shown that typical values of If , are a little more than 2 x 10
4

so that the individual term in the sumation of (19) would be of the order
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of 0.02 of the term WA . If the number of such terms were limited,

and I4g and As a  were known, the summation could be ignored,

and each of the equations (19) could be solved separately for the corres-

ponding WA If the number of terms for which MA is substan-

tial were great, however, a large collection of coupled equations would

need to be solved.

A Fourier analysis of terrain height around latitude 35 degrees

North was made in order to estimate the magnitudes of 19 A A out

to wave number 240. Heights were obtained from the U.S. Army Map Service

Series 1300 topographic maps and aeronautical maps, being taken at every

quarter of a degree. The resulting amplitudes of Itj A 1  show no

sign of decreasing out to wave number 240. (see Figure 4). Thus there

are at least several hundred terms of potential significance in each

summation, possibly many more.

If the phases of these terms were randomly oriented, the expected

value of the summation would increase as the square root of the number

of terms. Thus, 400 terms of order 0.02 WA might be expected to um

to a value of 0.4 V . However, A and ",e are not unform in

magnitude, but have a substantial variance of their own; this would act

to increase the magnitude of the sum, as would the unknown further extent

of appreciable terrain height oscillation to higher wave numbers.

In the summation were to approach WA in magnitude, the latter's

size would be increased, on the average. But this would entail a further

increase in W,% , in a progression which rapidly would become unstable.
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Figure 5. susmation of secondary wave energy flux as a function of
wave number.

The breakdown of the assumption of random phase would eventually serve as

a limiting control, at a point where the equations are thoroughly coupled.

Thus it in quite possible that a value of Wp computed by ignoring the

summation may underestimate the real values by a considerable margin, at

least on the average. Nevertheless, this is the only practical way to

obtain values of W,% , and the resulting energy transport.

This has been done, using a value A& - 0.2 a/sec; the energy flux

so computed is presented in Figure 5. The vertical tidal energy flux out

to wave number 200 is about 0.25 mw/m 2 . This figure might be doubled, to



-54-

include the effect of wave generated by V wind components. What is

not known is the extent to which the energy flux has been underestimated

for the reasons given above, and the upper limit to which the summation

should be extended.

If one assumes that the summation in equation (19) is actually

large compared to the term involving the primary tidal velocity, a second,

much more intuitive approach is available. In this case, the primary tide

loses Its special identity, and may be treated with all the other waves.

Defining:

A WA 39)

and noting that 64A.// I may be obtained from the solutions for each

node, with the upper boundry condition taken into account, equation (19)

may be written:

y J" we (40)

If d' extends over a large range, there is intuitively no reason

to expect I W^1 to be systematically greater or less than its equiv-

alent for neighboring wave numbers, especially if the "neighborhood" is

small compared to distances In wave number space over which the mean or

average of I c / varies appreciably. (This excludes the small

scale statistical variation in /). It would be logical to assume



that a sample of /W4 in a neighborhood would provide an approx-

imation to the real values in that neighborhood.

Unfortunately, only a sample of one, the primary tidal oscillation,

is available. Anticipating the results of the following chapter, this is:

Iw I 'I lai - /F ./.ec. (41)

If this is taken as a representative value for all waves of moderate wave-

length, then from equation (34):

"m ,,- ' r Ig'a a 1  
"D R.

- A (42)

If this is summed over the neighborhood to P , omitting waves

shorter than wave number four, (which are not internal gravity waves);

' , I*/

~~~~~W Ifs'0Aw(0!)U u. ~ (43)

If on g 200, a flux of 15 mw/ 2 would be expected. Because of the

logarithmic factor, the choice of a value for pI" is not overly critical.

Again, one might double this figure to allow for the V wind component.
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The crudity of this argument is self-evident. It in based on an

intuitive argument and a statistical sample of one. It is presented not

as a proof, but simply as an order of magnitude measurement, whose chief

value may lie in stimulating others to more rigorous analyses. There is

some self-consistency, since a typical value of A,,.* A4.qS a is

about 0.4 x 10 - 4 a/sec, compared to values of W^ here assumed to be

3 x 16-4 a/sec.
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CHAPTER IV. VERTICAL ENERGY TRANSPORT

IN THE OBSERVED TIME

A. The Vertical Energy Flux - Terciera

Harris, Finger, and Tewele, (1962) have analyzed radiosonde

observations at Terciera, in the Azores, obtaining the tidal components

of wind, pressure, and temperature. Under certain assumptions, it is

possible to analyze this data to compute the vertical flux of tidal

energy, and to compare It with the losses predicted for the tidal-terrain

interaction in Chapter III. The primary assumption is that the data

represents only one mode of oscillation, with a known separation factor,

Ground level pressure observations show that one mode, the

mode is an order of magnitude greater than other modes, (Siebert, 1961) at

least in moderate and low latitudes. (In high latitudes, the mode

becomes important.) For this mode h. = 7.85 ks. In the stratosphere,

insolational heating is small, and for this mode:

,=', ) - ] 0 (1)

so that to a first approximation, equation (11-38) becomes:

of d& -- so(2)
A 21"
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In an isothermal region, 41 and therefore:

PM (3)

from equation (11-39). Table I shows the observed amplitude and phase

of p. q*'A as a function of height in the stratosphere.

Table II. P- e for Terciera.

Height, ob. Amplitude, n/A 2  Phase, degrees

200 31.3 25

175 31.0 21

150 28.9 30

125 31.0 16

100 28.5 16

80 31.8 20

60 28.6 16

50 31.3 26

40 30.0 22

30 28.8 25

20 28.4 16

The constancy of Pe- is in good accord with equation (2),

if it is assumed that the a mode also dominates the stratosphere.

No other single mode could produce the uniformity observed in Table I.

While it is possible that several modes combine to produce the observed
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pressure, it would be a singularly unfortunate combination that could

produce such a result. It will therefore be assumed that the

mode dominates throughout the range of heights in the Terciera data.

In this case, the observed pressure may be treated as:

(4)

For convenience, may be normalized to a value of unity at the

observation site, incorporating a multiplicative factor into 4

Therefore:

P&. (-) 4. (*)

A XY mf a (5)

is an experimentally observed quantity, and h may be determined if

a function of V is known at any height.

The traditional approach is to take WAC) = 0 , so that:

However, the tidal-terrain effect precludes this. Were the nature of the

effect well enough understood to relate P, to WAm , a boundary con-

dition might be obtained. While the relative phase of these parameters

was estimated, their relative magnitude was not.



-60-

One alternative approach is through equation (111-2):

*•+GP (7)

which is derived from the condition that the kinetic energy in a unit

column be finite. In the present case, this equation is more useful in

ruling out solutions, rather than establishing an exact solution. Exam-

ination of the Terciera data, and very high level data at 80 to 100 km,

(Greenhow and Neufeld, 1955), show that (5) is a function whose amplitude

decreases continuously with height. If at any height, Ij I )1 "A I
then

(8)

or: 
0C i

(9)

from that height upward. Equation (7) then confines tj 0*0 to

values of the order of I - If condition (6) is applied

to the Terciera data, 41 is exploding exponentially at the tropopause

and above.

A second possibility, in line with the comments that have been made

in this chapter, is to assume # to be constant in the stratosphere,

say at 100 mb. With the aid of this assumption, $Is has been computed

graphically, and the vertical velocity, Wn computed from equation (11-40).
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(The pressure and velocity are presented in Table III.)

Table III. Pressure and vertical velocity

for the semidiurnal tide - Terciera.

Height Height Pressure Vertical Velocity

Wx (mb) nIRa degrees u/sec: degrees

0.0 1000 50 65 2.89 x 10 - 4  254

0.2 830 46 59 3.19 255

0.4 690 38 55 3.41 258

0.6 555 33 44 3.48 260

0.8 450 27 40 3.50 265

1.0 365 21 37 3.55 270

1.2 305 18 29 3.62 274

1.4 250 16 28 3.65 277

1.6 205 14 25 3.90 280

1.8 170 13 21 4.33 283

2.0 135 11 20 4.88 287

The ARDC 1959 Model atmosphere was used in computing F . ligure 6 shows

the vertical flux of tidal energy, .P .1 k$,a J computed from

these values.
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Figure 6. Downward flux of energy in the seimidiurnal tide -Terciera.
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There is a downward flux of tidal energy that reaches a maximum of

7 x 10- 3 w/m2 at the ground. The divergence of this flux requires a trop-

ospheric source of energy that will be discussed in the following section.

In Chapter III it was established that the pressure and vertical velocity

of the primary tide should be approximately 180 degrees out of phase at

the ground. The observed phase difference is 189 degrees.

It is worth noting that the total pressure variation of the second-

ary waves should be small compared to the variation of the primary wave.

From equation (111-22), the vertical energy transport of a secondary wave

is:

Hjapc ) -~) " ,*+ .- ,,] I

ROOO

a * , a,
.. ~~ o- IP,)I(0

Since 1104 varies as the square, and X. inversely as the first power

of horizontal wavelength, short waves will require a smaller value of

to transport a given energy flux. Therefore:

P a

summed over the secondary waves will be smaller than the square of the

magnitude of the primary pressure wave, much smaller if the bulk of the
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secondary energy is transported by waves of a few hundred kilometers

length.

But if the phases of the secondary waves are randomly oriented,

which would seem a logical assumption for a large number of waves, the

square of the total secondary pressure variation will equal the sum of

the squares of the individual waves. Thus the total secondary pressure

variation should be small compared to the primary variation, and would

not be likely to be observed in the data.

B. Generation of Available Potential Energy by the Tide - Terciers

The preceding section has shown that:

WWP (12)

>0
in the troposphere. Unless there is a similar convergence of the flux

( Vjp.* P,. ) in the horizontal, (and Chapter VII will show this is

probably small), there must be a mean generation of available potential

energy. Lorenz, (1955), has shown that available potential energy is

generated by conversion from kinetic energy, or by differential heating.

Since the mean value of tidal kinetic energy of a given mass does not

change, the latter process must be operative. The mean rate of available

potential energy generation by heating per unit mass is:

r' a *A[ TL, (13)a Te
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where:

- (14)

are the adiabatic and actual lapse rates. Primes refer to quantities

measured at a given particle, LAgrangian, rather than Eulerian parameters.

From the first law of thermodynamics, (see 11-17):

! ,Ov D ,f. i D - (yID) ",." (

with the aid of the perfect gas law, this may be reduced to:

P. D rD-AT'-'. ox D =  +Wg

or, since Lagrangian tidal parameters will also have a time dependence

1- x~(7

e P

If equation (17) is multiplied by and averaged over a cycle:

A T P. *-~ a TV ,*. - .1 pe [O 7" .
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With the approximations used in developing the linear tidal theory:

.. DP-. p_ uW.-pzP*
r = D " -- , (19)

P* may be computed from (19) and observed data, and if o is known,

the rate of generation of available potential energy may be computed. As

.Js- does not vary rapidly with position, it is essentially the same as

Ye-/ 
, and may be substituted for it.

Siebert, (1955, 1961), used the empirical formula of Mugge and Noller,

(1932), for water vapor absorption to evaluate insolational heating in the

atmosphere as a source of the tides. Using a rather artificial model with

a resonance amplification of 3.7, he obtained tides one-third the amplitude

of the observed tides.

The iuge-Nller equation was based on early experimental data by

Fowle, (1915). While Fowle did excellent work, neither theory nor equipmer

were very good at the time of his investigation. For example, he did not

take into account the variation of absorptivity of water vapor and carbon

dioxide with temperature and pressure. A more recent and complete study

by Howard, Burch, and Williams, (1955, 1956), has been used by Roach, (1961),

to compute mean daily heating rates in the atmosphere for the months of

January, April, July, and October.

it is possible to derive the semi-diurnal heating component from

Roach's computations. His data fit the Nugge-Noller approximation that



-67-

absorption at any given height varies as cos. 0 '7  , where I is the

solar zenith angle. (Numerical values, of course, differ.) The heating

rate may then be expanded in a Fourier time series:

e , Coq *-i f 0 .r ,s'-.: (20)

where, (Siebert, 1955, 1961):

-Xe 
(21)

Here X# is the local time of sunrise or sunset and is the solar

declination. The mean and semidiurnal coefficients of this series were

computed for latitude 38 degrees North, and the four months used. The

ratio of these coefficients was then used to obtain the semidiurnal heating

coefficient at varying heights from Roach's mean data. These are shown for

January, April, July, and October in Figure 7. Figure 8 shows the mean of

these values, taken as the annual mean semidiurnal heating function.

With this, the values of equation 13 were computed for Terciera as

shown in Figure 9. The values of:

E
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are also shown. In view of the limitations of the data and the approx-

imations that have gone into these computations, and in view of the

possibility of horizontal divergence of the wave energy flux, the agree-

ment must be considered to be satisfactory.

C. Comparison of Tidal Pressure Fluctuation - Terciera and Fort Worth

Msrs. Harris and Finger and Dr. Teweles, of the U. S. Weather

Bureau, have very kindly made available a second set of tidal data, for

Fort Worth, Texas, in advance of publication. A comparison of the pressures

at Fort Worth and Terciera offers some measure of the degree to which the

no mode is dominant. Because of the difference in latitudes, the

Fort Worth pressure in this mode would be 1.42 times that of the Terciera

data; the phases should be the same, when referred to local time.

Figure 10 shows the Fort Worth semidiurnal tide, divided by 1.42,

and for comparison, the Terciera counterpart. (The 1000 mb level is below

ground at Fort Worth.) Up to the 100 mb level, the agreement is quite good,

especially with regard to amplitude. The Terciera data shows a phase angle

perhaps 10 degrees larger at lower levels; this difference largely disappears

at higher levels.

Above 100 mb, the Fort Worth data shows a comparatively rapid drop

in tidal pressure, to a minimum at 50 mb. Pressure minima, or nodes, are

quite possible in tidal theory; in fact, Pekaris predicted a node at about

the 10 mb height. However, there are several features of the Fort Worth

data that are not in harmony with such a node.
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If a single mode of oscillation were dominant, as has been postu-

lated, the phase of the pressure should reverse with height as a node is

passed. The data shows no such phase reversal. Similarly, there should

be a node and phase reversal of the tidal winds; observationally, the 50

mb northward wind drops to about half of its normal value, but all other

winds show no sign of a node, either by amplitude or phase. It is, of

course, possible that a combination of modes might lead to a pressure

minimum. It is difficult to imagine such a combination that would not

produce considerable fluctuation in amplitude and phases at lower levels,

especially considering the rather abrupt onset of the 50 mb minimum.

Disregarding modal theory, the change in pressure fluctuation between

the 60 and 50 mb levels implies a semidiurnal fluctuation of 5.5 meter ampli-

tude in the thickness of this layer, normally 850 meters thick. This fluc-

tuation of 0.65% in the thickness implies a similar fluctuation in the

mean temperature of the layer, about 1.4 degrees. The observed semidiurnal

temperature fluctuation at this height is only about 0.1 degrees, however,

and the pressure and temperature data are not consistent. From the above,

it seems more likely the pressure is in error.
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CHAPTER V. VISCOSITY AND DAMPING

A. Viscosity in the Atmosphere

As it has been developed to date, tidal theory had been based on

the assumption of an inviscid atmosphere. It is not diff3Zuit to develop

an approximate theory to include effects of viscosity; though its value

is limited by lack of knowledge of atmospheric viscosity, especially eddy

viscosity. Nevertheless, the results are of importance to both primary

and secondary tidal waves.

In the troposphere, eddy viscosity is far more important than

molecular viscosity; it is also ill-defined, quite variable, and difficult

to measure. Even when measurements are made, they may involve motions of

different scales, and thus may be applicable to different problems.

Hess, (1959) quotes a values of V = 5 a 2/sec, valid for the lowest

kilometer. This is based on the rotation of the wind vector with height,

as predicted by the Eckmann Spiral theory. Palmen, (1955) has analysed

momentum transport of the zonal wind and has computed a value of 22 n2 /sec

at 700 mb. Data on eddy diffusivity to be published by Prof. Newell, (1963)

show mean values of eddy diffusivity of 3-30 m 2/sec in the troposphere, and

values one or two orders of magnitude less in stratospheric regions. The

eddy viscosity should be comparable.

On the basis of these data, a value of V = 10 a2 /sec will be assumed

for the eddy viscosity, with the recognition that it may readily be in error
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by a factor of two, possibly even a factor of ten. Fortunately, the

results of the following equations depend on the square root and cube

root of viscosity, so that the final errors are considerably reduced.

B. Mathematical Development - Planar Geometry

The model atmosphere used in the following discussion is planar,

isothermal, and rotating; the equations are linearized, but a uniform

viscosity in introduced. It is also assumed that the waves studied resemble

secondary internal gravity waves in that they propagate energy upward, and

have vertical shear far greater than horizontal shear, so that only the

former will be included.

With these approximations the equations of horizontal motion become:

VA OLWa' , f (2)

In the inviscid solution for this geometry, the wave parameter O

is proportional to E )1. I / O or to e 4 ,e , depending on

whether the wave is of the internal or surface gravity wave type. It will

assumed that in the present case, )$ has the form , where

may be real, imaginary, or complex.
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As A and Vft are linear functions of A, and its deri-

vative with respect to , multiplied by , they are propor-

tional to:

One further assumption, that:

(4)>>" a,

serves to simplify the equations; ( and V, may then be taken as pro-

portional to:

(5)

If a new variable:

--- -1- (6)

is introduced, equations (1) and (2) become:

A. (7)

-j 4-
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The solutions to the wave problem may then proceed formally as in

the linearized inviscid solution, except that some variables that were

real are now complex. The quantity (0 W- VW' ) is substituted for

( 9"  
-IA (W'O ) and the separation parameter, is therefore

complex, since:

9, (9)

The horizontal variation of the wave has been taken to be of the

form:

In an isothermal atmosphere, the vertical wave equation is:

"4 f .J - (11)

where :

0 o HH

This yields the relation:

-. -

ofd ( Ogg) -.. V #Ako
(13)
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or:

-- ,1ai

(14)

The following are takeni as representative values which would make

the model used here the closest counterpart of the real atmosphere for

waves of semidiurnal frequency:

et I.f ID-  TPc' g) - I0 s y grC"
a- 4 a /.! o - O  PSC V Pf e

a. C4 A 0 U/a e 10 Jm rc- (15)
H. " 0 h 1 a,0017

Then:

a. m= .70o/.aHe. IL

If wavelengths are limited to those less than 3000 ka, 2x10- 6

and:

A w~p %61 >(17)

while:

(Lr- V"') =- O. 3/x/ J 16)
'I
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Therefore, to a good approximation, equation (14) may be written:

- (- :a_ - , HipMo o
-f

- '  
C.. 41 (19)

This is a sixth order equation, which may readily be reduced to a cubic

by the substitution:

./O f (20)

When (20) and the preceding numerical values are substituted into (19),

the resulting equation is:

-- (21)

For sufficiently small values of , one root of this equation

approaches:

- O, , 2)5._.' ________(2
o.5l

or in algebraic terms:

(0-a-qwa)(23)

This is simply the inviscid solution. The other roots are approximately:

. f , + .- (24)

&
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The modes of oscillation described by (24) correspond to viscously

coupled waves of comparatively short wavelength and strong damping in the

vertical. In the case of no rotation, they reduce to one mode, with:

S- '(25)

This is simply the classical solution to an oscillating plate in a viscous

fluid. If Cr" , rather than W goes to zero, the solution is an Eckman

spiral.

Chapter III was based on an inviscid theory, and ignores the modes

specified by (24). There are several reasons for doubting that viscous-

coupled modes are excited to a large extent. First, eddy viscosity decreases

near the ground; qualitatively this might be expected to decouple tidal-

terrain effects from viscous waves. This is observed in the lower boundary

layer beneath Ekman spirals, (Hess, 1959). Second, eddy viscosity varies

greatly from one place to another and over times comparable to tidal times.

Since the vertical wavelength of viscous waves is dependent on eddy viscos-

ity, it will be dlifficult to maintain them on anything approaching a steady-

state basis. Thirdly, the viscous theory presumes all tidal velocities,

not simply the vertical go to zero at the ground, with a substantial

variation of velocity over a scale of one km in the vertical. This is

no'. observed in the Terciera data.

V
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A somewhat better approximation to the gravity wave solution may be

obtained by setting:

S 5 . (26)

where SA and 5. are real. For small V , 3 <'( ) , and

S, < If (26) is substituted into (21) and real and imaginary

parts are separately compared:

-- -- '(27)

3S- ',2, £4 0 - 3",-S (28)

If only the largest of the terms in (27) and (28) are retained:

SA 2 -- ° (29)

S..2 - (30)
,..A

Algebraically, this is equivalent to:

A eIEI 4 (31)

or:

- A (

,r+

__ __ __ __ __ __ __ __ _ __ __ __ __ __ ___H_
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Let:

Then:

H. AA

and:

A ~ ~ ~ ~ -A 1  e...got)

t'n ok (35)

( I)

The mean upward flux of wave energy is proportional to ,lor:

_ I (36)

If the energy flux is reduced to e-  of that at the ground level value

at 15 km, then with the assumed values of O- and 1.)

0 &v . . (37)

The approximations used in deriving these results break down when

-&, "- 1 that is, when the viscous terms in the equations

of motion are comparable to the other terms. This occurs when:

_A4_ (38)
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Within the range defined by (37) and (38), the waves should behave

much as inviscid gravity waves, except for the vertical damping factor in

(35). For shorter wavelengths, a complete viscous solution should be

obtained.

There is another, more physical method of deriving the damping.

This has been done in part by Hines, (1961), for the non-rotation planar

case, again subject to the assumption that the waves are not seriously

distorted by the viscosity. If horizontal shears are neglected, the rate

at which kinetic energy is dissipated is:

R Y 4, P (39)

The total energy density associated with such waves in a non-rotating

system is:

EL a.(40)

One may associate with these a damping time:

(41)

and a damping distance:

L. ; " r (42)

which is the product of vertical group velocity and the damping time. (For

these waves, vertical group and phase velocities are equal and opposite.)

When w = 0, equation (3j) reduces to:

________ ____
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(43)

The WKB approximation developed in Chapter II allows extension of

this work to non-isothermal atmospheres, providing the scale height and

vertical gradient of scale height vary slowly over a vertical wavelength.

In this case, A must be replaced by 1* 4 0HO This alters

only equation (38), the definition of , which now becomes:

~ (44)

In the troposphere, ( + so that

Therefore, (37) corresponds to horizontal wavelengths of 1000 kin, and (38)

corresponds to horizontal wavelengths of 160 km. Waves longer than 1000

km will be transmitted through the troposphere with little attenuation;

the stratosphere with much lower eddy viscosity will offer no damping to

them, and they should reach the mesosphere. Waves shorter than 1000 km

will be damped in the troposphere, and waves of 100-200 km length may be

considerably distorted by viscosity.

C. Viscous Damping for the Primary Tide with a Smooth Earth

Jacob Bjerknes, (1949), suggested that ground friction might alter

the phase of the tide, and represent a loss of tidal energy. The simplified

analysis of the Chapter permits at leaat a qualitative examination of this

possibility.
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The solutions to a viscid atmosphere for the tidal equations contain

an inhoiogeneous solution and six homogeneous solutions. Three of the latter

may be ruled out by the high level boundry conditions that kinetic energy of

a unit column be finite, and that no mode propagete energy downward from

great heights. The other three are required to cancel the three velocity

components of the inhomogeneous solution at the surface of the earth. As

two of these are viscous-coupled waves, even a smooth earth surface may

bring about a loss of tidal energy.

The viscous modes of oscillation for waves longer than 200 km described

previously have a vertical dependence:

C(45)

to the first order approximation. To the same order, they have no pressure

fluctuations or vertical velocities, and also:

C= : i V (46)

The vertical energy flux in such waves may be obtained as follows;

consider the atmosphere to be divided by a level surface. The retarding

force per unit area exerted on the lower section by the upper is (Lamb, 1932):

The mean work per unit area done by the lower fluid on the upper is equal to

the product of the horizontal velocity and the retarding force per unit area,
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averaged over a cycle, or:

J 7TP, (48)

when (6) is taken into account. Thi- represents an energy flux transported

upward by the wave, which is viscously dissipated at higher levels. If

1 .15x1 sec 2n = 1.0x10 4 sec 1 , .e = 1.2 kg m 3 , and

10 m 2 sec 1 , (8) is equivalent to:

42.5 ( (49)

or:

19 IW-1 (50)

depending on the mode excited. If a number of modes of the same vertical

structure are present, their velocities may be summed vectorially, and

the resultant used in this computation; it is the total resultant force

and the total velocity that must be multiplied. If I V- can be esti-

mated, the viscous energy losses may also be obtained.

At the most, one might attribute all of the observed ground level

-1
tidal wind motions to viscous modes. These winds are - 0.2 m sec

:' -2
In the worst case, this leads to a viscous loss of 1.7 mw M . However,

if this were the case, one would find much more variation with height of

the wind amplitude and phase than is found at Terciera. It therefore seems

-2
that viscous losses do not exceed 1 mw a 2 and cannot account for the

downward flux of energy in the primary tidal wave.
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D. Viscous Damping in the Upper Atmosphere

It is generally felt that eddy viscosity will be much smaller in

the stratosphere than in the troposphere. The temperature lapse rate

creates a much more stable atmosphere in which turbulence is suppressed

vertically. In the mesodecline, however, stability is again relatively

low, and an increased eddy viscosity might be expected. An additional

source of turbulence may be active near the mesopause; internal gravity

waves with large vertical shear are observed in this region, (Hines, 1961).

On the basis of meteor trail and sodium vapor cloud measurements, Hines,

2 -l
(1963), estimates a value for )) of 100 m sec at 90 km. This is a

factor of ten larger than the value assumed for the troposphere, and

wavelengths of 2000-3000 km may be strongly damped.

Above 100-110 km, molecular viscosity becomes the dominant factor

in viscous dissipation. Table IV shows values of the molecular kinematic

viscosity as a function of height in the E-region.

Table IV. Molecular kinematic viscosity in the

lower ionosphere.

Height Kinematic Vi cosity L
2 -~c

(km) (m sec - ) (km)

100 36 8

110 300 23

120 1,700 55

130 5,400 98

140 12,000 145

I
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These figures should not be taken to have more than order-of-

magnitude significance. They are derived from Sutherland's empirical

formu' a:

(T. 4 u) (51)

with temperatures and densities from the ARDC 1959 model atmosphere,

(Minzner, Champion, and Pond, 1959). The latter are not known accurately,

and (51) has been extrapolated beyond the range for which it was derived.

In addition, (51) is valid only for air of normal composition; above 100 ka,

oxygen dissociation and diffusive separation change the composition. How-

ever, gases of roughly comparable molecular weight do not differ by more

than a factor of two in viscosity, so that the equation is at least valid

to order-of-magnitude.

Table IV also shows the vertical wavelength, Lc , for which the-I

damping time constant, ( ) t) is equal to the semidiurnal tidal

period. Shorter waves would be expected to be strongly damped at the

corresponding levels. At these heights, the horizontal wavelengths are

about 300 times the vertical wavelengths, so that by a height of 130 ha,

even waves of global scale will be damped.

At these heights, wave amplitudes are large enough so that non-linear

interactions occur. These interactions may also feed energy to shorter

waves that are rapidly damped; this represents an additional energy sink for

larger waves.
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CHAPTER VI. HYDROKMAG(ETIC DAMPING IN THE IONOSPHERE

A. Introduction

In the ionosphere above 100 km, hydromagnetic effects play an in-

creasingly important role in atmospheric motions. A search of the liter-

ature was undertaken to attempt to find what role such forces might play

in dissipating either primary or secondary tidal waves.

This search showed considerable interest in the ionospheric inter-

actions of wind and electric current, but primarily from the standpoint

of current generation rather than wind dissipation. It is generally

assumed that the winds "shall be inexorable" (Dungey, 1959). It has been

pointed out qualitatively that electric fields generated in the E-region

may produce motion of the gas as well as currents in the F-region, (Baker

and Martyn, 1953).

The only paper discovered that dealt specifically with the dissipa-

tion of the winds is by V.P. Dokuchaev (1959). In this study, he makes a

number of simplifying assumptions that allow the decoupling of the kinematic

and electromagnetic equations, and thus is able to obtain a simple form of

the equations of horizontal motion for the air. He obtains a damping term

that arises from the transverse conductivity, and a coriolis-like term

stemming from the Hall conductivity.

One of Dokuchaev's assumptions is in direct contradiction to assump-

tions made by a number of other workers, (Baker, 1953; Baker and Martyn,

1953; Ratcliff, 1959, 1960; Dungey, 1959). He assumes that no polarization
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electric fields are set up by charge unbalance. On the other hand, Baker

and Martin used a conductive sheet model of the ionosphere and concluded

that polarization fields would completely inhibit the Hall current, and

greatly enhance the transverse conductivity. It appears that Dokuchaev's

arguments are not valid, and that polarization does play an important role.

However, the results of Baker and Martyn may also be criticized; the

authors were well aware of the appreciable limitations of the sheet model

and worked to circumvent them. It also appears that their conclusions are

valid only for an irrotational wind field.

We shall first present Dokuchaev's results, and then discuss how

they might be modified through the theories of Baker and Martyn. The

resulting equations of horizontal motion contain two damping terms. One,

like the comparable term by Dokuchaev, is decoupled; the second stems from

the polarization field, and is not. It can be shown that the second term

is normally of the same order as the first, and that if it is neglecting

in integrating the rate of energy dissipation over an ionospheric "sheet",

the result is an over-estimate. Physical arguments may also be given to

show that substitutions o: the Baker-Martyn conductivities in the Dokuchaev

equations leads to an over-estimate of damping losses, since all the errors

tend to produce excessive transverse currents.
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B. The Dokuchaev Equations

Dokuchaev begins with the equation of motion:

-0 - + (1)7

+ W 7 + VPI

V = air velocity

JP = air density

= air pressure

= kinematic viscosity

= gravitational acceleration

= angular velocity of earth

= magnetic field of earth

= electric current density

C = speed of light

(The symbols H , P and X are used with different meanings

in this chapter than they are used elsewhere, in order to agree with the

original papers. As they are never used for their alternate meanings in

this chapter, no confusion should result).

The standard assumptions are made that the gas is incompressible,

that H varies only very slowly, and that L.Q) is negligible.

The generalized Ohm's Law is also used:

*Q~t.4Ej6 h.(2)
Cf.
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Here h. is a unit vector in the direction of , and O , 07

and n are respectively the longitudinal, transverse, and Hall conduc-

tivities. A' is the electron, (and approximately the ion) density,

while e , , and Ve are the electron charge, mass, and frequency

of collision with neutrals, and , n , and YA" are the corresponding
eli e/f

ion quantities. W' E and 40i ir are the electronIWOW

and ion gyrofrequencies. Also the conductivities are given by:

rv e' + -(3

-+ a(4)

Finally:

I ,-& (6)
E + I

The electric field, consists of an irrotational portionAV
and a non-divergent portion, . Since:

(7)
VicE C

being the variable portion of I , and

I'1 «< I l (8)

h <<_______
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Dokuchaev concludes by dimensional arguments that 1Ej <I -c

Dungey, (1959), reaches the same conclusion.

The irrotational, or electrostatic field is given by:

where # is a net charge density, Dokuchaev argues that since the relax-

ation time for charge unbalance in the ionosphere is a small fraction of

a second, and since the atmospheric time scale is many seconds, + must

be zero.

While it is true that charge unbalance sets up fields that produce

neutralizing currents, and that most plasmas are quasi-neutral, other

agencies may act to reinforce charge unbalance, and the resulting polari-

zation occurs as a balancing of rates. (Note that since atmospheric motions

are much slower than the times for electromagnetic adjustment, we may treat

the electrical problems as steady-state.)

We shall return to this point iq a moment. However, continuing

Dokuchaev's arguments, we consider the Hartmann number:

a 07HL (10)

M -- 5 (-4

In the E-layer, Dokuchaev takes 0-, = 4.5 x 105 /sec, V.7 = 10- 4 gm/sec-cm,

= 0.5 gauss, L = 40 kin, and M t 20. While it might be argued that

vertical dimensions for L may be somewhat smaller, the effective value of

p- may also be much larger. The Hartmann number stays above unity in
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the F-region, according to Dokuchaev, since L also increases in this region.

(Again, this is questionable.) On this basis, the viscous term can be

dropped from the equation of motion.

With the above approximations the equations of motion for the t

(eastward) and V , (northward) wind components become:

(a, + = H V.. H,., I,< = P (1

)V~- O-,H1 ,V.P (12)

+- (_;ca - (12)

Here:

H =(13)

and Ht and H, are the northward and vertical components of , and

C) the vertical component of . If:

.p C-a (14)

%=+ H 14 (15)PCa

then equations (11) and (12) become:

-... v -*gC.( - -* -~.(16)

~v ~- O (17)

P I

__________________ ______________
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If we multiply by (4 and V respectively, and add, we obtain the

horizontal kinetic energy equation:

__ 3 V2V 3  PL)

The second term represents a dissipation with a time constant

In a tidal system, the long time average of kinetic energy is a constant.

In this simplified equation, the dissipation must be balanced, on the average,

by work done by pressure forces as represented by the right hand side of (18).

Had the nonlinear terms been left in, advection of horizontal kinetic energy

would also have been possible. The damping coefficient A is given as a

function of height in Figure 11. These data were based on conductivities

by Baker and Martyn, (1953), and densities from the 1959 ARDC Model atmos-

phere, (Kinzner, Champion, and Pond, 1959). (Strictly speaking, the same

densities should have been used in computing the conductivities. However,

other parameters are even less well known).

The Hall conductivity may markedly alter the coriolis parameter, as

may also be shown from a plot of 01 H as a function of height,
PC a

This effect depends on the assumption of charge neutrality, however.

Now return to the original critical assumption of charge neutrality.

As a simplified model, consider an infinite flat geometry with a normal

magnetic field and no initial polarization. Then:

- 01VH (19)
C C

__-_______________-__ ____-_________0__
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and the vertical current is zero, providing there is no vertical velocity.

Therefore:

~7J'q a- *o '1) (21)

Were the gas incompressible, and in two-dimensional flow, + '-

but even in this case the flow must also be irrotational to avoid the crea-

tion of a polarization field. Dokuchaev's assumption requires a very strong

restriction on the nature of the velocity field, since without polarization,

in general, the current is divergent.

C. The Results of Baker and Martyn

Before embarking on a quantitative discussion, it is worth while to

gain some physical insight through an argument presented by Baker, (1953).

Consider an arbitrary infinite sheet having a transverse conductivity vl 0

and a Hall conductivity 07 . Let an electric field be applied by means

of arbitrary electrodes. The Hall current then flows along equipotential

lines and the transverse current along field lines. Since the equipotential

curves are closed, the Hall current causes no polarization.

If the sheet is now terminated by a finite boundary, some equipoten-

tial lines will be intercepted, and the Hall current will cause a charge

to build up on the boundary, with a resulting polarization field. No current

will flow between pairs of points on the boundary. If the electrodes lie on

the boundary, all of the equipotential lines are intercepted, and no Hall
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current at all will flow. The resulting polarization field will also

react through the Hall conductivity to cause a current to flow along the

original field lines. The final result is as though the Hall conductivity

were zero and the ':-ansverse conductivity were:

a
Gj=U74± (22)

Baker then considers an arbitrary surface, and under a set of assump-

tions, shows that the Hall current is completely cancelled, and that the

effective transverse conductivity is given by (22). The assumptions are:

1. The transverse and Hall conductivities are independent of

direction. Physically, this corresponds to a normal mag-

netic field.

2. Both conductivities are uniform over the surface.

3. The surface may be treated as infinitely thin.

4. The wind field may be represented by a scalar velocity

potential, 41 , and lies within the sheet.

The first assumption is normally met within a factor of two, except

near the equator. The second is quite inexact, as the conductivities vary

by almost an order of magnitude from night to day. Some, but not all of

the problems of the third assumption can be avoided by using vertically

integrated conductivities. The final assumption restricts us to irrota-

tional motion. Under these assumptions, the top and bottom of the sheet

are polarized so as to oppose any vertical current.

_________________
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It appears that the fourth assumption is very restrictive, and

automatically gives rise to the cancellation of the Hall current. If

the wind field is described by a velocity potential such that:

V - (23)

and N is normal to the surface, the induced e.m.f., 1VA/H,1 lies

along equipotentials. There are no lateral boundries on the spherical

shell to intercept these equipotentials, the form sets of closed curves

on the surface, along which the transverse current is free to flow.

The Hall current must flow along lines normal to these closed curves,

the "field lines" of 4-* , and these lines must necessarily converge to

points. If a Hall current did flow, it would be convergent, and this is

prohibited in the steady state. Therefore a polarization field must be

set up to oppose the Hall current at all points. This polarization field

must be such that by itself it would cause a direct, or transverse current

equal and opposite to the induced Hall current. (It cannot cancel though

its own Hall current, as this would imply the integral of grad around

a closed loop was not zero.) The polarization field's Hall current will

add to the induced transverse current, as noted before.

An unbounded vector field, such as the velocity, may be uniquely

resolved into two component fieldsy one irrotational, and the other sole-

noidal, (c.f. Newell, 1955). The irrotational portion may be represented

by a scalar potential. If the field is two-dimensional the solenoidal

portion may be represented by a stream function, (c.f. Milne-Thompson1955).

_______________________________________________
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The conclusions drawn by Baker are valid only for the first portion of

the notion.

Now consider the second case, representable by a stream function

I, such that:

w hg Vf ( normal to surface) (24)

The velocity now lies along closed curves, while the induced e.m.f. lies

along normals to these curves. The transverse current now would be con-

vergent, and must be completely cancelled by the polarization field. But

in this case, the polarization and induced fields are everywhere equal

and opposite, so that the total field is zero, and no current at all will

flow. (See section D.)

Thus the irrotational velocity field will have enhanced damping

from its own currents, while the solenoidal velocity field produces no

currents. It will interact with the other field's currents in an undefined

manner, locally producing either positive or negative damping.

One may try to obtain some physical insight as to the effects of

the other assumptions. In the irrotational case that Baker treats, a

direct current flows in closed loops. We can envision a tube of current,

along which there are both induced and polarization e.m.f.s., the polar-

ization being so distributed to keep the current constant, despite changes

along the length of the induced e.m.f., or the conductivity per unit length

of the tube. The latter will vary if the tube cross-section varies. One

can also let it vary through change in . A varying conductivity will



thus create a different polarization field, but does not qualitatively

change the mechanisms involved. It is strongly suspected that a varying

conductivity could be incorporated in Baker's equations by replacing N

and # by 0- 9 and -y* as variables. Of course, since no

current flows in the case of a solenoidal wind, the conductivity is irre-

levant.

If the magnetic field is not perpendicular to the surface, the

induced e.m.f. will have a normal component. As noted, vertical polari-

zation will cancel this component; the remainder of the induced e.m.f. is

equivalent to that which would arise from the vertical component of the

magnetic field.

If the wind field is vertically uniform, a vertical variation in

conductivity may be treated by the use of vertically integrated conduc-

tivities. Baker, and Baker and Martyn have followed this approach. We

shall not repeat their arguments, but simply notice that physically this

allows a Hall current to flow by closing a vertical loop. This reduces

the enhancement of direct conductivity. Baker and Martyn suggest that

such leakage may be cancelled by the induction of motions in the short

circuiting region. This is the dynamo theory in which the 9 layer dynamo

drives the F layer motor; when the motor is in motion, it produces a back

e.m.f. that reduces current flow.
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D. Currents Induced by a Solenoidal Velocity Field

We shall follow the notation used by Baker in his dynamo theory for

an arbitrary surface having two orthogonal coordinates (A and V . The

elements of length are h, PISC and h, ot V . Assume a magnetic

field having at any point a normal component H. . As noted previously,

-4
tangential components of H have their effects cancelled by vertical

polarization. Let E* be the total electric field, with components E*

and Ev in the plane. The transverse conductivity 1"7 and the Hall

conductivity r will be assumed everywhere uniform and independent of

direction.

As the current system must close, a current function R exists

such that the current densities are given by:

V t<(25)

From the generalized Ohm's Law, the equations for and .I become:

-1 * (26)

R - - - (27)

We now eliminate

.....j ~ - = .... ___+ _ (2a)

h. h a v heha )14 v , h.

RI ; . (29)

h. 1 -+ X E"

h _%
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Adding (28) and (29) and substituting from (26) and (27)

-gT - - , E a-~j -a -- - E '(0
I - - I

hh,

or:

o-., ( " E ) °  (31)
or:

(32)

consists of solenoidal and irrotational components. The polari-

zation field is given by the gradient of a scalar potential, thus being

irrotational.

Now consider a solenoidal velocity field, given by:-__ V (33)

where P' is a unit vector normal to the surface. The induced e.m.f. is:

C C (34)

The curl of the induced field is:

- 0 ,. , -o (35)
C

so that in this case, the induced field is also irrotational. Therefore,

__ _ _ __ _ _ _ __ _ _ __ _ _ _



-104-

is irrotational, and e is zero. But from (32), 7.*E

must then also be zero. Since contains neither non-divergent,

(rotational) nor irrotational components, it must be zero. If that is

so, no currents will be generated.

E. An Upper Limit to Hydromagnetic Damping

If daytime values of Oj are substituted into equation (14), in

place of 0- , the effects of polarization are taken into consideration.

However, at least three important sources of error remain. The damping

is valid only for the irrotational portion of the wind, the effects of

vertical current closure have been ignored, and the day-night variation

of conductivity has not been taken into account. From the previous dis-

cussion, it appears that all three errors act in the direction to produce

an overestimate of the viscous damping, so that a reasonable upper limit

to the magnitude of hydromagnetic damping may be obtained.

Figure 11 shows X as a function of height, using d ; for com-

parison, Dokuchaev's values with 07 are also shown. If > approaches

the tidal frequency, hydromagnetic damping becomes important. It is

possible, though of course not proven, that this may occur above 100 km.

As has been noted, molecular viscosity rapidly becomes a dominating factor

at these heights, and viscous damping will likely exceed hydromagnetic

damping for vertical wavelengths shorter than 30 km in the E region, and

should certainly predominate for any waves which can propagate to 150 km.
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Figure 12. Annual variation of E-layer critical frequency squared,

at midday, for Slough, England. (Mitra, 1951.)

I
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If hydromagnetic damping is important to the primary tide at these

high levels, long-term variations in the mean conductivity should be

reflected in the tide. The conductivity has a seasonal variation, as

shown in Figure 12. The square of the noon-day critical frequency,

(a measure of electron density) is plotted as a function of season, at

Slough, England. Values are for the E-region. Conductivity is reduced

considerably near the winter solstice. The tidal motions at 80-100 km,

(see Chapter VII) are at a maximum at this time, which might be expected

if damping losses were reduced. However, there is usually an additional

maximum in September that cannot be explained on this basis.

Figure 12 also suggests that an eleven year period be looked for

in the tides at these heights, if hydromagnetic damping is important.

The existing data at these levels covers only a four year period, and no

identification with such a period can be made; there is a small trend

toward decreasing amplitudes in corresponding months of successive years,

during a time span, (1953-1957) of increasing sunspot activity. These

observations offer tantalizing encouragement, but no proof, whatever.

There is also the possibility, which will not be taken up here,

that gravity waves may couple energy to hydromagnetic waves, and vice-

versa.

II
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CHAPTER VII. EFFECTS OF EDDY CONVECTION

In Chapter IV it was shown that differential heating, through a

positive correlation between the tidal temperature and water vapor absorp-

tion of solar radiation leads to a generation of tidal energy. It is

equally possible that a negative correlation of the temperature fluctua-

tion with diabatic heating from another source might lead to the destruc-

tion of tidal energy. One possible source is eddy convective heating

from the ground. If such an effect were operative it would result in an

energy sink close to the ground; it would then offer an explanation for

the downward flux of tidal energy. This mechanism thus requires further

exploration.

From the results of Chapter IV, the mean rate of generation of

tidal available potential energy per unit volume is:

where the primes refer to Lagrangrian parameters, d is the dry adia-

batic lapse rate, and r the actual thermal lapse rate. (As has been

done in earlier chapters, To will be taken from the ARDC 1959 Model

Atmosphere.) It has also been shown that (1) may be written approximately

* as:

ArP AJ (2)
dPe _____ _____
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Like the effects of eddy viscosity, the amplitude of the semidiurnal

eddy conductivity heat flow decreases rapidly with height, damping out with-

in the first few hundred meters above the ground. Over this range,

and F, may be taken as approximately constant. From the observational

data, I also changes comparatively little over such a height range and

hence also will be taken to be constant to the crude approximations made

here. These approximations simplify the evaluation of the first half of

expression (2).

If the term in We, is neglected, the total rate of energy genera-

tion by convective heating, (hopefully negative), between the ground and

some level 4O at which convective heating is negligible is-

-r A 6-1 # .i ,)p
1w (3)

or:

a (cr. P.) io" I P1 c,-

Here is the upward convective heating flux at ground level. Hori-

zontal convergence of diabatic heating is small in this layer. If numerical

values are substituted equation (4) becomes:

[ Pv- C(5)
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-3 2
If this energy sink is to balance the downward flux of 7x0 w./m.

2
the component of ICO  out of phase with P- must be about 30 w./m.

The one set of convective heat flux data known to the author that

may be resolved into its periodic components has been compiled by Lettau,

(1949), for measurements in the Gobi Desert in June. The amplitude of

2
the semidiurnal component was 60 w./m. . Desert conditions in June are

more representative of extreme rather than mean global fluxes. The flux

over oceans would be expected to be much smaller, for example. A mean

convective flux of 30 w./m. at the latitude of Terciera is not out of

the question, however.

The phase of the Gobi data is such that the semidiurnal flux reaches

a maximum at one o'clock. This is almost exactly in time quadrature with

the tidal pressure. Unless the phase of the flux at other points on the

globe is retarded by several hours from this value the convective heating

will not serve as an energy sink.

Computing the influence of the second term in expression (2) is

more difficult, since %We may vary considerably. In fact, if the

tidal-terrain effect is dismissed, it must go to zero at the ground. An

upper limit to the magnitude of the term might reasonably be obtained by

taking V.. to have a magnitude equal to the value computed in Chapter IV

and to be in phase with JT" at all heights. The contribution of this

component would then be:

(6)

~C
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Under these most ideal of situations a magnitude of I C.j = 60 ./,? would

be required. If W#, goes to zero at the ground or has less than optimum

phase, a still greater flux would be required. In fact, if V/#- maintained

the phase and amplitude computed in Chapter IV and the vertical flux at the

Gobi Desert phase, tidal energy would be generated rather than lost.

A more convincing argument against the importance of eddy convection

has already been presented in part in Chapter III. If the energy flux goes

to zero at the ground, then the component of V,. out of phase with P-

must go to zero also. In this case the change in WM must occur over

a short height. But this cannot be accomplished without corresponding

abrupt changes in loop , which are not observed in the tidal data. From

equation (23) of Chapter III:

in the case of the mode of oscillation, while:

p c 0* (8)

If abrupt changes in oA4 occur over distances over which " changes by

a small fraction, (say I km,) these changes must be reflected primarily in

changes in . But if the changes in are more pronounced

than the changes in . , p must also change. Observationally, the

change in P,1 is small over these heights. It is still possible that con-

vective heating plays a role in smaller scale perturbatic.j in the tidal

amplitude and phase, however.



CHAPTER VIII. MERIDIONAL TRANSPORT OF TIDAL ENERGY

A. Theoretical Considerations

Inspection of the results of Chapter II shows that for a single mode

of oscillation, the meridional component of the tidal wind is in time quad-

rature with the pressure. Equation (11-20) states that:

for a planar geometry, while for a spherical geometry, (11-47) states:

V .r- . 2 .W ).. (2)

If only a single mode of oscillation exists, the horizontal variations of

all tidal parameters may be resolved into separate zonal and meridional

variations. Thus along any line of constant longitude, a has constant

phase, and P (or , as tie case may be) has the same

phase as P4 The zonal dependence of P. is of the form

(or ,) so that , (or ) is proportional to P .

It follows that Vo, is in phase quadrature with P , and:

(3)

There is no mean meridional flux of tidal wave energy.
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There are circumstances under which there may be a mean flux in

the meridional direction, however, Two modes may combine in such a manner

as to produce a net transport. Let V, and P be associated with one

mode of oscillation, and V., and Pa with a second at some given point.

If:

I I.1 (4)

and the waves are not in phase, then P, 4 l2 need not be in quadrature

with V + V. , and there can be a mean meridional energy transport.

If the two modes have different zonal wave numbers, simple inspec-

tion indicates that their relative phases vary through an integral number

of revolutions around a latitude circle. For every point on this circle

where the mean meridional transport takes on a given value, there will be

a corresponding point where the relative phase is reversed and the trans-

port will be in the opposite direction. Thus there will be no energy flow

when integrated over the entire latitude circle.

On the other hand, if the two waves have the same zonal, though

different meridional dependence, their relative phase will be the same

at all points on a latitude circle, and there will be a net meridional

transport.

As this energy flux arises from cross terms:

( vaP % (5)
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it represents a non-linear interaction between the two modes, and an

inter-modal transfer of energy. It is not necessary to resort to a solu-

tion of the non-linear equations to gain some further insight, however.

The following analysis will be done in terms of the rotating planar model,

though the extension to the spherical case is obvious. Iet the total

tidal pressure be written as:

P (6)

where io- and S are real variables. Then from equations (11-20):

(7)

(a P- W1 l
(8)

The mean zonal flux of wave energy is:

At .j [J.,a.aC,~~ 4- 8"]J (9)

and the mean meridional flux is:

.s (10)

AUA 0

joi
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The meridional flux is thus associated with a meridional shift in

phase of the tidal pressure.

The shifts in phase of Up. and V- relative to P.- have an

additional effect, producing term that enter into the kinetic energy

budget. The mean rates of conversion of zonal and eridional kinetic

energy Into potential and internal energy are given by:

and:

+J% lIV pt 4 " @' 0-a-V P (12)

respectively. Thus for A < 0 corresponding to a mean northward

energy flux, there is a gain of zoral kinetic energy and a loss of meri-

dional kinetic energy. There is also a term, (Saltzman, 1955):

a
V>.4 (13)

representing the mean conversion from zonal to meridional kinetic eitergy

through the coriolis deflection, so that the horizontal kinetic energy

budget is balanced in parts as well as in the whole.
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The product:

represents a meridional transport of zonal, or angular momentum. It is in

the opposite direction to the meridional energy flux.

It is also possible to write the equivalent equations in the more

general case., when waves of different zonal wave numbers are present. In

ti c , is not generally proportional to ,., There-

fore, one must write:

'), it - C-ONT(16)

A CO 6 RT

=%V '- J11 C4 &4-0 i(17)

and:

The kinetic energy generation remains balanced but the meridional

energy flux is not as simply related to the energy conversion terms. The
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transport of angular momentum Is no longer a contribution to the man

zonal momentum, but may represent additions to time-invariant waves.

One possible cause for a phase shift with latitude in the pressure

wave may be found in the tidal-terrain interaction discussed in Chapter III.

The amplitudes of both the heating function and the observed tidal pressure

decrease with increasing latitude. It was shown that the generation of

tidal energy depends on the correlation of these parameters, and so also

drops off rapidly at high latitudes.

-I

The horizontal winds are proportional to ('-*-qa'A ) , and

to the gradient of pressure, the eastward component of which increases

relative to the pressure itself at higher latitude. The secondary wave

losses, which are proportional to the square of the horizontal velocity,

will thus decrease less rapidly than the ability to generate tidal energy.

This will act to distort oscillational modes, and may "encourage" a north-

ward energy transport.

Figure 3 may be used to demonstrate this point at low levels. If

at higher latitudes, the horizontal winds are greater for a given pressure,

the downward flow of tidal energy must also be greater. Therefore, the

magnitude of W6 must be increased, relative to that of the total pres-

sure, P + . But since W& is also proportional to P& , the

phase lag of the ground level pressure wave must increase at higher lati-

tudes. This decrease in phase angle with latitude corresponds to a north-

ward transport of tidal energy. Of course, changes in terrain will also

have effects, of a less readily predicted nature.
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It is also possible that viscous or non-linear terms that have

been omitted from the equations of motion produce phase shifts and resulting

meridional transport. From the results of Chapter III, the vertical portion

of eddy viscosity should have little effect on the tide; the effect of large

scale horizontal eddies may still be an open question. It will be shown in

Chapter X that the non-linear interaction with such waves is probably small.

B. Observed Inergy Transport - Terciera

The data from Terciera, (Harris, Finger, and Teweles, 1962), provide

information on 4 and V,- , as well as the pressure of the semidiurnal

tide. The meridional energy flux may thus be computed. However, the wind

data is less accurate than the pressure dataY and produces rather scattered

results. (Note that Table I of that reference was inadvertantly computed

for Greenwich, rather than local time, and that therefore, corrections of

+27 degrees and +54 degrees must be added to the diurnal and semidiurnal

wind phases, respectively.)

The meridional energy fluxes obtained from this data are shown in

Figure 13. Below 500 mb, and above 200 mb, the flux is northward. In the

intervening region it is southward. The meridional component of the tidal

wind behaves abnormally in this middle region. At greater and lesser

heights, it is equal to or slightly greater than the zonal component, as

theory predicts. In the intervening region it drops to a third the mag-

nitude of the zonal component. The cause for this is not understood.

Presuming the effect is real, some form of reflection at the tropopause
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or non-linear kinetic energy interaction may be responsible. Observations

at other stations are needed to see whether this is a persistent phenomenon.

If it is assumed that only zonal wave number two is present, then

from (10) and (11):

*(19)

this appears to hold true, (Figures 13 and 14) except in the 500-200 mb

region. On the assumption of a single zonal wave number two, the generation

of zonal kinetic energy has been computed, (Figure 15) and shows a gener-

ation of zonal kinetic energy of the crder of 5 x 107 7 w./m. 3  It should be

noted that this is quite likely to be balanced by an equal loss of the mer-

idional kinetic energy. Unfortunately, the latter cannot be computed without

a knowledge of the meridional pressure variation.

It is not possible, on the basis of a single station, to decide whether

the meridional energy flux is representative of a latitude circle, or will

oscillate along it. If it is a representative flux, and if there are diver-

gences of the order of 1/& of the flux itself,( S being the earth's radius)

there may be energy divergences of the order of 2 x 10 3 ./m.2 of the earth's

I l~surface. This is not inappreciable compared to the 7 x w., downward

flux.

C. Observed Energy Transport - Fort Worth

A similar set of data for Fort Worth has been graciously provided in

advance of publication, by Msrs. Harris and Finger, and Dr. Teweles. The
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mean meridional energy energy flux, is shown in Figure 16. The flow is

northward at all levels. The flux has a greater magnitude than at Terciera,

not too surprising in view of the greater magnitudes of P. and V.. As

the wind data at Fort Worth was originally recorded in smaller angular

increments than the Terciera data, the tidal wind components have more

accuracy, and the flux shows somewhat less scatter.

The generation of zonal kinetic energy from potential energy is shown

in Figure 17, on the assumption of a wave of zonal number two. With the

improved accuracy of the wind data, it is also possible to compute the con-

version from zonal to meridional kinetic energy, as shown in Figure 18.

This conversion largely balances the generation of zonal kinetic energy.

D. Meridional Transport of Momentum - Meteor Trail Observations

In the past decade, a new source of wind data for heights of 80 to

100 km has become available: radar observations of meteor trails, ((reenhow,

1959; Greenhow and Neufeld, 1955, 1956; Neufeld, 1958; Elford, 1953, 1959).

These observations have been taken at Jodrell Bank, England, and Adelaide,

Australia. They show very substantial tidal wind velocities of 10 to 50

meters per second. As the phases and amplitudes of the semidiurnal tide

are available, it is possible to compute:

(20)

and hence to obtain the meridional transport of angular momentum by the

tidal component of the winds.
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At Jodrell Bank, the diurnal tide is considerably smaller than the

semidiurnal tide, and will not be considered here. Neufeld, (1958) has

presented data from 100 days of observations over a four year period from

September, 1953 to August, 1957, averaged to refer to a mean height of

92 km. The relative phase angle between Up. and Vr is shown in

Figure 19. The error flags are derived from Neufeld's estimate of the

error. The dotted curve represents a smoothed average, obtained by aver-

aging over a month, every half month. Figure 20 shows the values for (20)

computed for each observation. The dotted line is a similarly smoothed

average.

The data indicate a seasonal change in momentum transport. There is

probably a northward transport in late winter and early spring, and a clear

thought comparatively small transport in mid-summer. A southward transport

occurs during October and November, corresponding to a sudden increase in

the tidal magnitude and shift in phase. These transports are of a suffi-

ciently great magnitude to be important in the general circulation, if

they are maintained around a latitude circle, or to contribute to large

standing waves if they are not. If:

V' (21)

enough angular momentum is transported to increase the zonal wind by one

meter per second per day everywhere north of Jodrell Bank.

Unfortunately, pressure data, (Greer-how, 1959) is not sufficiently

accurate to permit computation of the meridional energy flux of the tide.
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Density fluctuations are of the order of 7% of the total density, and

adiabatic pressure variations would be of the order of 1/y of this, or

5%. From the ARDC 1959 Model Atmosphere, A = 1.88 x 106 kg./n., and

Pe = 9.07 x 10 - 2 n./a.2 at 92 km. If = J f 20 3./sec, then:

LI 7 + 'a .- *"-/ W'.A/ rnf (22)

With zonal momentum transports of this order, one night expect 10-20%

of the energy flux to'te in the'meridional direction. As it requires a flux

of 4 x 107 2 w./m. 2 to heat the air at this level between Jodrell Bank and

the pole by 1 degree per day, this flux is not an important part of the

mesopause energy budget.

The data for Adelaide, (Elford, 1953, 1959) shows an increased semi-

diurnal tide, and a greatly increased diurnal tide, now larger than its

higher frequency counterpart. Both show velocities of 50 a./sec. While

t4,_ and V.- often show strong time correlation for both tides, their

aphases vary quite erratically, and no seasonal trends have been observed.
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CHAP= IX. AMNCTION OF POTMTNIAL ENEMGY AND SENSIBIZ =AT

The transport of tidal energy ham been considered in a Lagrangian

frame of reference. It is also possible to consider transports by the

tide in an Eulerian frame of reference, that is, by advection, across a

surface fixed in space, (or at least fixed relative to the earth.) In

this case tidal motions may also produce a mean flux of sensible heat:

and of potential energy:

-±- , (2)

by advection. The significance of these energy transports can be made more

clear by the following mental experiment.

Consider a volume of the atmosphere measuring one meter in height,

one meter In zonal width, and on the average ten kilometers in meridional

extent. Let the northern end of this volume move with the tide, so that

no matter is advected across it, while the other surfaces remain fixed In

space. The excursion of the moving surface is then given by, VV-" A. ,

of the order of one or two kilometers. For parameters comparable to the

Terciera semidlurnal tide, in the troposphere:

C C e. r' + ?*T-o.) ip a (3)
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and I vr- 0.2 i./sec., so that the mean advection of sensible

heat through the southern end of the volume may be of the order of several

watts per square meter, producing a total contribution of energy flow into

the volume of a few watts.

The zonal advection of sensible heat per unit area is of the same

order, but since the total surface is about 10
4 M2 and zonal gradients are

at most of the order of 1077 or 10- 6 of the flux itself, this contribution

to mean acquisition of energy by the volume is negligible. Vertical advec-

tion will be discussed shortly.

The gravitational potential, I may be referred to any convenient

level; it will be most convenient to take the bottom surface as the level

at which is zero. Any other choice would produce different fluxes through

each surface, but since the mean density does not increase, the sum of the

differences would cancel. The mean advection of potential energy through

the southern surface is:

-L;. - .- ~ 21 /0 I1. (4)
a La

which is negligible. The same type of argument applies to the lateral

boundries as held for sensible heat, so that their net contribution may

be ignored. There can be no advection of potential energy through the

lower surface, where F . 0 There is an instantaneous advection of:

(5
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through the upper surface. Since the area of this surface varies consid-

erably, a correlation of the flux and area can produce a mean acquisition

of energy:

• -E We- A (6)

within the volume. This can be significant, since:

Io pO o j (7)

There is also energy transport by the term i A. ,_ vv"i

representing work done on the northern boundary, and the advection of exergy

of compression across the other, stationary surfaces. Accumulation of

energy in the volume through the horizontal components of this flux are

negligible, since gradients are small over the volume, and fluxes at oppo-

site boundries largely balance.

Since:

YX T
(8)

the vertical transports of sensible heat and energy of compression may be

combined into a single term, with an instantaneous value of:

C , + R _' j O ry w, e (
w.. -- /. -JOo "" - I'
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The difference between fluxes at the two surfaces one meter apart lead to

a net accumulation of energy per unit area from this term of:

-I) - (10)

A mean accumulation of energy in the volume again results from the corre-

lation of flux and area, and is:

-WAN (

With a steady-state tidal system, there can be no mean accumulation

of energy, and the advections of sensible heat, compressive energy, and

potential energy must either balance each other or be balanced by a non-

adiabatic source or sink within the volume. The results of Chapter V In-

dicate that, for the primary tide, viscosity is not an important energy

sink. Insolational heating can provide such a source. The tidal heating

rate per unit volume is 2 x 10- 3 w./m. 3  Since the volume changes, a corre-

lation between the heating rate and the volume can produce a net energy

acquisition, of the form:

. , f,..ao watts (12)

Equating this to the advective terms:

-L t ,O- 0 . . 1v

(13)

AA[ CV (p- To +- '.s T - 0 '
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or again making use of (8):.: o r ] _ , , [C, (..w. + A. TO-)v.'
P0 V O (,:fT.) oK

L + V (14)

The meridional flux of tidal available potential energy is thus related to

vertical advection processes and to the insolational heating. It may simply

be the result of the phase relationships between various parameters necessary

to produce vertical energy transport.

The above arguments were based on the assumption that only notions

with frequency 0- were present. One must consider whether energy conver-

gence brought about by aperiodic notions or motions with other frequencies

should be included in the volume mean energy balance. The choice of a mean

meridional length of ten kilometers for this volume was arbitrary, and was

made to simplify the problem conceptually. This length does not enter into

the final results.

One might just as easily define the mean length as zero kilometers;

in this case the volume, lateral length, and lateral areas must be consid-

ered to be negative half the time. A positive energy flux across a negative

surface then corresponds to a negative addition of energy. If a proper

regard for signs is maintained, the same results as above are obtained.

There must be no mean accumulation of energy in the volume, even though

its mean value is zero.
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If the mean volume is zero, however then a mean convergence of

energy brought about by aperiodic motion or motion of other frequencies

cannot contribute to the mean energy acquisition by the volume. They may

contribute instantaneously, but their effect over time is averaged out.
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CHAPTER X. NONLINEAR INTERACTION OF THE T MKS WITH ROSSBY WAVES

A. Introduction

Non-linear terms such as (V.V) have usually been neglected

in the tidal equations, as being of small order. If the only motions present

were those of the tides, this would be so, at least to the mesosphere where

tidal fluctuations become comparatively large. However, if the major atmos-

pheric waves are considered, it is not a priori obvious that they do not

contribute to equations of tidal frequency.

For example, consider the term Us" I. where &(q is the
-- -

non-tidal wind. Gradients of winds in the atmosphere are often 10 -5 sec-1,

and may reach 10 - 4 sec . This term must be compared with i 0- (0e- ,

and 0" -: 1.5 x 107 4 sec- 1
. The generation of secondary waves through

interaction between tidal and Rossby waves is thus a definite possibility.

In the following discussion, a mathematical derivation of the gener-

ation of gravity waves is set up, for a rotating planar geometry. The first

case is applied, with simplifying assumptions, to a model atmosphere in

order to obtain estimates of the energy transport that might be expected.

It is assumed for tractibility that all waves have a definite frequency,

and time-invariant amplitude.

B. Mathematical Development

First consider a flat planar geometry with an angular velocity 3 P

directed normally. It shall be assumed that the atmosphere has a barotropic
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state, denoted by the subscript O , and that superimposed on this state

are waves, whose parameters are of small order. These waves may be of

various types and frequencies, but it is assumed that they are steady-state

and that all equations may be taken as Fourier transformed in time; all

variables having the time dependence OF will be denoted by the subscript

A product of two terms bracketed by f 10" will denote the

Fourier transform of all products having the resulting frequency G"

except for interactions involving the barotropic state.

Under these restrictions, the equations of motion become:

A CA)"e -e V0 -- =-~ 61. 1

Here and Ot are the horizontal coordinates, along which the velo-

cities (A and V flow, respectively. When equations (1) are solved for

Us, and Ve-

IP' a P
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and: , ri -P , +P -- .via-.

The velocity divergence, X..is given by:

+ u

If also: - .t L.)

(5)

and:

0.
Ff C O (6)

where a is a characteristic distance, then equation (4) may be written:

_,_ O " -Y -(
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The hydrostatic approximation is made, so that -- 9

The vertical equation of motion then becomes:

P -_ (8)

The equation of continuity is:

(9)

Two more quantities are defined by:

(10)

- X .'o- +  O (11)

so that the equation of continuity may be written:

.A - + "+ w =0o (12)

If j-- is the rate of non-adiabatic heating per unit time per

unit mass, the first law of thermodynamics may be written in the form:

.= C Dr. + f PD + -Q-- ' ) (13)

Fit 0*'

___________________________________________ ____ ______
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If this is combined with the equation of state for an ideal gas, one finds:

. o=-+W.. ew PO. = Y,,,HoPA X@, + V.,4 (HX},,.

- (14)

Let J-be defined by:

i- -Y4 HXJ, - ' v.".

(15)

where Y is the ratio of specific heats, and also let -4 . . *J .

In the above equations, HO is the scale height of the atmosphere.

Equation (14) then becomes:

o.- l + V,- /Pe = ,-/,,P.', C y- A)P 70.
(16)

or:

p -.o+v.(? -). ",, (17)

A
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If equation (11) is substituted into (7), one obtains:

" V4 "*- Ft. + .
X, + (s+A +(18)

This is analogous to (11-25). The linear analysis may be followed almost

directly from here.

Differentiate equation (17) with respect to . , to obtain:

) (19)

, ~ a) (,',) (/ r

Use has been made of the fact that:

, A - -. + 2t)
>Op- HO. (20)

The equation of continuity and the hydrostatic equation may be combined to

obtain:

0.- )Pu-

XS .,(21)

Equations (19) and (21) may be combined to obtain:

o ~ ~ V 1e( + )~. (22)
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If this equation and equation (11) are differentiated with respect

to 3 ,and - -o eliminated between them, one obtains:Y 26

ah.c v --- Y
HO-. I~f X ,- * )a Y ;)(3

where A c ! But from (17) and (22):

(24)

a)1 . J

- - or

H-

Equation (25) may be solved by separation of variables. Let the

variables &1 , 2 1 U , ) 0 a nd JO'be represented by series expansions

in the eigenfuncttons, TI of the operator F

..- "£, . , 9.) ., (2.6)

:X- - : '- ,c ,t
I, -- i , z,9) .( ."
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When these are substituted into (25), with h, taken as the separation

coefficient:

Fh+ 4h4w 0 (27)

and:

HH. + (O) (28)

IV

9 Ub

The va ue,.pf the separation coefficient is determined by the eigen-

solutions to equation (27). If .&^ , , X , and ;, are

known functions, then equation (28) formally gives a solution for x;,
and hence . The other parameters of the nth mode may be solved in

terms of ) and the known parameters.

It is conventional to cast equation (28) into the form of a one-

dimensional wave equation by two further changes of variable. Let:

~ ~f~L(29)

and:

- * "(30)
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In order to handle non-linear terms introduced In this derivation, a third

quantity:

- (31)

is also defined. When (29), (30), and (31) are substituted into (28), the

resulting equation is:

-12 DL(32)

C. Simplification to an Isothermal Atmosphere

The following work will be devoted to isothermal model atmosphere.

It will be convenient to develop the equations for this particular case.

If H. is independent of Of- , equation (28) becomes:

= - -.~ s "

(33)

or: (
do 'XA^.. _ d~' -AX ,

o 4.74) -
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In anticipation of subsequent results, it will be assumed that all

variables on tne right hand side of equation (34) have the vertical depend-

tence expf(- - ) ./Ao , where /6 may be either real or complex. It

will be shown in the simple models to be used here that ot" X,

and are of this form. While it will not enter the following equa-

tions, Siebert indicates insolational heating may follow a similar law.

On this assumption, equation (34) becomes:

0 aX - 01

41"
0, He," /h (35)

where: I

-/C) ( -/em) + (36)

Again, a simplification -,f form may be had by changes of variables:

(37)

(36)

a- (39)
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If these are substituted in (36), it becomes:

(40)

D. Application to an Elementary Model

The preceding analysis has been applied to a very simple model, in

order to obtain an order of magnitude estimate of the energy losses to

secondary tidal waves through interaction with Rossby waves. Details of

the model are as follows.

1. The atmosphere is planar, rotating with angular velocity

0.5 x 10 sec , and isothermal, with a scale height of 6 km. The gravi-

tational acceleration is 9.8 m/sec2 . The basic wavelength in the 7
direction is 30,000 km, and all waves are uniform in the I direction.

The ground is taken to be smooth.

2. There is an unchanging wave of the form:

V L.e -/$C (41)

and a wavelength of 7500 km. The amplitude is chosen to be compatible with

a spectral analysis of large scale waves by Saltzman, (1956), and a similar

analysis by Horn and Bryson, (1963). The wave does not change with height,

and the pressure field is geostrophic.

3. There is a tidal wave, whose J velocity component is:
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(Therefore, f varies as A Or ). The horizontal wavelength

is 15,000 km, and the frequency 0 = 1.5 x 10 - sec 1 . It is assumed

that non-linear effects are small, and that first order values for other

parameters of this wave derive from linear tidal theory. This theory and

the given data then determines that:

"" = 0.188 (43)

In deriving the other tidal parameters, it is assumed that there is no

heating function, and no restriction on vertical motion at the surface.

In effect, the primary tide might be considered to be driven by undulations

on the surface of the earth. (While this is highly artificial, the object

is merely to get representative tidal motions in the atmosphere itself.

4. A secondary tidal wave of the form:

U" 
44

is generated. for this wave is computed from the equations of the

preceding sections, and the energy transmitted to great heihgts is calcu-

lated. It is assumed that the secondary, like the primary tidal wave,

does not interact strongly the other waves, to form tertiary waves.

The vertical energy flux computed for this wave is 5 x 10 w./m.

It is felt that this is a representative order of magnitude value for waves

of these dimensions. There was no large cancellation of terms, and individ-

ual terms checked for other forms of Rossby wave were of the same magnitude

as their counterparts in this model. All parameters, including 0" , were

chosen to be as representative as possible.

j
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The upward flux of a single secondary wave is only of the order of

1% of the generation of tidal energy. In order to know whether non-linear

interactions are a serious loss mechanism for the tide, it is necessary to

answer to further questions, as to the energy flux when summed over all

wave numbers, and as to the relative amounts of energy contributed to this

flux by the primary tidal and Roasby waves.

For large wave numbers, equation (83) may be used to show that:

o(45)

If e, may be expressed in terms of ft. , where 6 is some

empirically or theoretically determined exponent, then one may make at

least qualitative conclusions about the summation of flux over wave numbers.

If 6 ( -2, the summation converges. For wave numbers above 6 or so,

Horn and Bryson, (1963) find b = -8/3 out to wave number 12. Ogura,

(1958) found b = -7/3 over this spectral region. If this behavior continues

to higher wave numbers, the secondary flux summation should converge reason-

ably rapidly. Unfortunately very little is known about atmospheric eddies

with dimensions from 100 to 1000 kn, at least insofar as their mean kinetic

energies are concerned.

There is a second reason for believing that smaller eddies will not

contribute greatly. The preceding calculations were based on the assumption

that the Romsby waves do not change amplitude. This is not a particularly

good assumption in any case, but becomes increasingly poor for the smaller
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scales. The rate of energy transfer to a secondary wave depends among

other things on the amplitude of that wave, and under transient circum-

stances, it will take that wave several cycles to build up to magnitudes

comparable to steady-state values. It seems likely that energy transfer

will be less than computed here under such circumstances.

Finally, one may note that the non-linear generation of energy in

wave A occurs through the advection of a parameter, (say velocity) of wave

B by wave C up the gradient of a corresponding parameter, (say momentum)

of wave A. Saltzman, (1955). For example, consider the kinetic energy

exchanges involving the L( velocity components of three such waves. The

rates on energy generation are proportional to:

/.f.S A A LA6 &k C

LA 'A LCJ (46)

A~,+- A,+ * 3

If tA < he , then energy exchanges occur primarily between waves B

and C. When one considers the interaction between the primary tide, Rossby

waves of short length, and secondary tides, the energy transfer will be

*. primarily between the latter two.

Since it appears that secondary wave fluxes are small, and extract

energy from the Rossby waves, they are not regarded as an important loss

mechanism. It should be stressed, however, that the approximations used

in this chapter are of a rather crude nature.t
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CHAPTER XI. CONCLUSIONS AND SUGGESTIONS FOR FUTURE W)RK

A. Conclusions

The semidiurnal atmospheric tide has been found to transport avail-

able potential energy downward; at Terciera, in the Azores, this flux

amounts to some 7 x 107 3 watts per square meter at or near the ground.

The primary source of this energy appears to be insolational heating by

water vapor in the troposphere, though a horizontal convergence of tidal

energy may make appreciable contributions.

Three possible sinks for this energy have been considered. These are:

1. A tidal-terrain interaction.

2. Viscous damping near the ground.

3. Convective heating out of phase with the tidal temper-

ature fluctuation.

On the basis of rather simplified theory, the latter two possibilities appear

too small, and would be expected to produce effects not found in observational

data. They are of a magnitude that might account for local perturbations in

the semidiurnal tide. It has not been possible to make an accurate estimate

of the tidal-terrain effect. To do so would involve treating several hundred

coupled equations involving modes of oscillation expressed in complicated

Hough's functions. A simplified analysis has led to an estimated energy flux

-3
of 0.5 x 10 watts per square meter or more, with no way of telling by what

factor this is an underestimate. The tidal-terrain effect thus cannot be

ruled out, though evidence for its importance is far from conclusive.
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This effect has been obscured by the traditional approximation of

a smooth earth surface as a boundary condition, a rough boundary acts to

couple all possible modes of oscillation, so that the primary mode of

tidal oscillation cannot be excited without also exciting a large number

of secondary modes. Most of the latter are internal gravity waves. and

transport energy upward. There can be no net energy transport through

the ground, so that a corresponding downward flux of nergy must exist in

the primary, or driven tidal mode.

The secondary waves have horizontal lengths from global scale down

to the order of one hundred kilometers, and possibly smaller. Viscous

damping in the troposphere is substantial for wavelengths shorter than

roughly one thousand kilometers. Langer waves transport tidal energy to

the upper mesosphere, where increased eddy viscosity damps them. The

largest waves reach the lower thermosphere, where molecular viscosity and

possibly hydromagnetic damping are effective. In these high regions, non-

linear interactions between the waves may be important.

The observed data for the primary semidiurnal tide above the Azores

and Fort Worth also show a meridional transport of energy and angular momen-

tum. These phenomena are not pobbible with a single linear, inviscid mode

of oscillation, but may reflect interaction between two or more modes.

More data is needed before any conclusions can be reached about these

transports.

A set of equations has been developed to treat non-linear interactions

between waves whose frequencies and amplitudes remain constant. Applied to

i
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a rather simple model these equations indicate that interactions between

tidal waves and the large scale atmospheric eddies do not represent an

important tidal energy loss in the troposphere.

B. Suggestions for Future Work

The hypotheses developed in this study have been confirmed only by

limited observational data. There is a need for further analyses of the

type carried out by Harris, Finger, and Teweles, (1962), for Terciera.

New data can serve not only to measure the vertical energy flux but to

confirm the hypothesis that the mode of oscillation is dominant

in the stratospheric as well as the ground level semidiurnal tide. Addi-

tional data is even more important in examining meridional transports,

since these measurements are made with considerably lower accuracy and

may vary with longitude as well as height and latitude. A more complex

analysis of the meridional energy flux is necessary to assess its contri-

bution to ,(v.V. P.-).

Unfortunately, more than four daily observations are needed to

obtain data on the semidiurnal tide. The technique that has been used is

to choose a station taking four daily observations, but at different times

in different years. The number of stations filling this requirement is

quite limited.

It is possible that the amplitudes and phases of the 0A , (main

migrating semidiurnal) and 0 (main standing semidiurnal) modes of

oscillation may be related through the tidal-terrain theory. Until now, it
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has been assumed the latter arises out of differences in heating over land

and sea, (Siebert, 1960).

A further expansion of meteor trail observations would add greatly

to the knowledge of high level tides, as well as providing information

about the general circulation at these levels. At present essentially

nothing is known about the horizontal structure of either in the upper

mesosphere.

The gap in information between 30 and 80 kilometers will be harder

to fill. Rocket soundings have begun to provide wind data in this region;

their number will have to be increased considerably before time harmonic

analyses can be made with any accuracy, especially since the tides show

marked seasonal changes in the upper atmosphere.

In short, the greatest need in tidal investigation is for more data

at all levels above the ground.

The greatest challenge to the theoretician is to be found in the

tides of the upper atmosphere. At the mesopause they are of a magnitude

to be a major part of the atmospheric circulation. They may play important

roles in the production, maintainance, and stability of the general circula-

tion. Linear theory is no longer valid for these waves. Techniques such

as were developed in Chapter IX may be applicable, or it may prove more

advantageous to abandon the primitive equations, as has been done in dynamic

meteorology.
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At still higher levels, the coupling of hydrodynamic and hydromag-

netic waves can be the basis of a challenging career. The analysis of

hydromagnetic damping has been done in a very crude manner, and the possi-

bility that hydromagnetic waves are generated has been completely ignored.

If tidal theory is to be extended to the upper ionosphere, these problems

must be faced.

_____________________________________________ ________
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